Dr. Euler's fabulous formula :: cures many mathematical ills /
Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to elect...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. |
Beschreibung: | 1 online resource (xxxii, 380 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400838479 1400838479 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn716119973 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110428s2011 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d OCLCQ |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d NLGGC |d OCLCQ |d TEFOD |d OCLCQ |d JBG |d COO |d AGLDB |d IOG |d EZ9 |d OCLCQ |d VTS |d LVT |d STF |d M8D |d UX1 |d IEEEE |d OCLCO |d OCLCQ |d OCLCO | ||
066 | |c (S | ||
020 | |a 9781400838479 |q (electronic bk.) | ||
020 | |a 1400838479 |q (electronic bk.) | ||
020 | |z 0691150370 | ||
020 | |z 9780691150376 | ||
035 | |a (OCoLC)716119973 | ||
037 | |a 22573/ctt1132s |b JSTOR | ||
037 | |a C5E2889B-A581-48BC-B5F0-71A83C9DE230 |b OverDrive, Inc. |n http://www.overdrive.com | ||
037 | |a 9452443 |b IEEE | ||
050 | 4 | |a QA255 |b .N339 2011eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
072 | 7 | |a MAT034000 |2 bisacsh | |
072 | 7 | |a MAT015000 |2 bisacsh | |
082 | 7 | |a 512.7/88 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Nahin, Paul J. | |
245 | 1 | 0 | |a Dr. Euler's fabulous formula : |b cures many mathematical ills / |c Paul J. Nahin ; with a new preface by the author. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c 2011. | ||
300 | |a 1 online resource (xxxii, 380 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Preface : "when did math become sexy?" -- |g 1. |t Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- |g 2. |t Vector trips (some complex plane problems in which direction matters) -- |g 3. |t The irrationality of [pi]² ("higher" math at the sophomore level) -- |g 4. |t Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) -- |g 5. |t Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- |g 6. |t Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) -- |t Euler : the man and the mathematical physicist. |
650 | 0 | |a Numbers, Complex. |0 http://id.loc.gov/authorities/subjects/sh85093211 | |
650 | 0 | |a Euler's numbers. |0 http://id.loc.gov/authorities/subjects/sh85045553 | |
650 | 0 | |a Mathematics |x History. | |
650 | 6 | |a Nombres complexes. | |
650 | 6 | |a Intégrales eulériennes. | |
650 | 6 | |a Mathématiques |x Histoire. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Euler's numbers |2 fast | |
650 | 7 | |a Mathematics |2 fast | |
650 | 7 | |a Numbers, Complex |2 fast | |
655 | 7 | |a History |2 fast | |
776 | 0 | 8 | |i Print version: |a Nahin, Paul J. |t Dr. Euler's fabulous formula. |d Princeton, N.J. : Princeton University Press, 2011 |z 0691150370 |w (OCoLC)700406565 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=362301 |3 Volltext |
880 | 0 | |6 505-00/(S |a Preface to the paperback edition -- What this book is about, what you need to know to read it, and why you should read it -- Preface: When did math become sexy? -- Introduction: Concept of mathematical beauty. Equations, identities, and theorems. Mathematical ugliness. Beauty redux -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of π ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first, but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and √ −1 (technological applications of complex numbers that Euler, who was a pratical fellow himself, would have loved) -- Euler: the man and the mathematical physicist. | |
938 | |a YBP Library Services |b YANK |n 3670387 | ||
938 | |a EBSCOhost |b EBSC |n 362301 | ||
938 | |a ebrary |b EBRY |n ebr10460253 | ||
938 | |a hoopla Digital |b HOPL |n MWT13281962 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn716119973 |
---|---|
_version_ | 1816881757909155840 |
adam_text | |
any_adam_object | |
author | Nahin, Paul J. |
author_facet | Nahin, Paul J. |
author_role | |
author_sort | Nahin, Paul J. |
author_variant | p j n pj pjn |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA255 |
callnumber-raw | QA255 .N339 2011eb |
callnumber-search | QA255 .N339 2011eb |
callnumber-sort | QA 3255 N339 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface : "when did math become sexy?" -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of [pi]² ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) -- Euler : the man and the mathematical physicist. |
ctrlnum | (OCoLC)716119973 |
dewey-full | 512.7/88 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/88 |
dewey-search | 512.7/88 |
dewey-sort | 3512.7 288 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04561cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn716119973</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110428s2011 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TEFOD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">COO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">IOG</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">LVT</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UX1</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400838479</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400838479</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691150370</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691150376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)716119973</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt1132s</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">C5E2889B-A581-48BC-B5F0-71A83C9DE230</subfield><subfield code="b">OverDrive, Inc.</subfield><subfield code="n">http://www.overdrive.com</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9452443</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA255</subfield><subfield code="b">.N339 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7/88</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nahin, Paul J.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dr. Euler's fabulous formula :</subfield><subfield code="b">cures many mathematical ills /</subfield><subfield code="c">Paul J. Nahin ; with a new preface by the author.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxii, 380 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Preface : "when did math become sexy?" --</subfield><subfield code="g">1.</subfield><subfield code="t">Complex numbers (an assortment of essays beyond the elementary involving complex numbers) --</subfield><subfield code="g">2.</subfield><subfield code="t">Vector trips (some complex plane problems in which direction matters) --</subfield><subfield code="g">3.</subfield><subfield code="t">The irrationality of [pi]² ("higher" math at the sophomore level) --</subfield><subfield code="g">4.</subfield><subfield code="t">Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) --</subfield><subfield code="g">5.</subfield><subfield code="t">Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) --</subfield><subfield code="g">6.</subfield><subfield code="t">Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) --</subfield><subfield code="t">Euler : the man and the mathematical physicist.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numbers, Complex.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093211</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Euler's numbers.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85045553</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">History.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres complexes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Intégrales eulériennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques</subfield><subfield code="x">Histoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Euler's numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Complex</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">History</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nahin, Paul J.</subfield><subfield code="t">Dr. Euler's fabulous formula.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, 2011</subfield><subfield code="z">0691150370</subfield><subfield code="w">(OCoLC)700406565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=362301</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">Preface to the paperback edition -- What this book is about, what you need to know to read it, and why you should read it -- Preface: When did math become sexy? -- Introduction: Concept of mathematical beauty. Equations, identities, and theorems. Mathematical ugliness. Beauty redux -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of π ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first, but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and √ −1 (technological applications of complex numbers that Euler, who was a pratical fellow himself, would have loved) -- Euler: the man and the mathematical physicist.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3670387</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">362301</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10460253</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT13281962</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | History fast |
genre_facet | History |
id | ZDB-4-EBA-ocn716119973 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:48Z |
institution | BVB |
isbn | 9781400838479 1400838479 |
language | English |
oclc_num | 716119973 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxii, 380 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Nahin, Paul J. Dr. Euler's fabulous formula : cures many mathematical ills / Paul J. Nahin ; with a new preface by the author. Princeton, N.J. : Princeton University Press, 2011. 1 online resource (xxxii, 380 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Presents the story of the formula - zero equals e[pi] i+1 long regarded as the gold standard for mathematical beauty. This book shows why it still lies at the heart of complex number theory. It discusses many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. Includes bibliographical references and index. Print version record. Preface : "when did math become sexy?" -- 1. Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- 2. Vector trips (some complex plane problems in which direction matters) -- 3. The irrationality of [pi]² ("higher" math at the sophomore level) -- 4. Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) -- 5. Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- 6. Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) -- Euler : the man and the mathematical physicist. Numbers, Complex. http://id.loc.gov/authorities/subjects/sh85093211 Euler's numbers. http://id.loc.gov/authorities/subjects/sh85045553 Mathematics History. Nombres complexes. Intégrales eulériennes. Mathématiques Histoire. MATHEMATICS Number Theory. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Euler's numbers fast Mathematics fast Numbers, Complex fast History fast Print version: Nahin, Paul J. Dr. Euler's fabulous formula. Princeton, N.J. : Princeton University Press, 2011 0691150370 (OCoLC)700406565 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=362301 Volltext 505-00/(S Preface to the paperback edition -- What this book is about, what you need to know to read it, and why you should read it -- Preface: When did math become sexy? -- Introduction: Concept of mathematical beauty. Equations, identities, and theorems. Mathematical ugliness. Beauty redux -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of π ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first, but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and √ −1 (technological applications of complex numbers that Euler, who was a pratical fellow himself, would have loved) -- Euler: the man and the mathematical physicist. |
spellingShingle | Nahin, Paul J. Dr. Euler's fabulous formula : cures many mathematical ills / Preface : "when did math become sexy?" -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of [pi]² ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) -- Euler : the man and the mathematical physicist. Numbers, Complex. http://id.loc.gov/authorities/subjects/sh85093211 Euler's numbers. http://id.loc.gov/authorities/subjects/sh85045553 Mathematics History. Nombres complexes. Intégrales eulériennes. Mathématiques Histoire. MATHEMATICS Number Theory. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Euler's numbers fast Mathematics fast Numbers, Complex fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093211 http://id.loc.gov/authorities/subjects/sh85045553 |
title | Dr. Euler's fabulous formula : cures many mathematical ills / |
title_alt | Preface : "when did math become sexy?" -- Complex numbers (an assortment of essays beyond the elementary involving complex numbers) -- Vector trips (some complex plane problems in which direction matters) -- The irrationality of [pi]² ("higher" math at the sophomore level) -- Fourier series (named after Fourier but Euler was there first -- but he was, alas, partially wrong!) -- Fourier integrals (what happens as the period of a periodic function becomes infinite, and other neat stuff) -- Electronics and [square root of -1] (technological applications of complex numbers that Euler, who was a practical fellow himself, would have loved) -- Euler : the man and the mathematical physicist. |
title_auth | Dr. Euler's fabulous formula : cures many mathematical ills / |
title_exact_search | Dr. Euler's fabulous formula : cures many mathematical ills / |
title_full | Dr. Euler's fabulous formula : cures many mathematical ills / Paul J. Nahin ; with a new preface by the author. |
title_fullStr | Dr. Euler's fabulous formula : cures many mathematical ills / Paul J. Nahin ; with a new preface by the author. |
title_full_unstemmed | Dr. Euler's fabulous formula : cures many mathematical ills / Paul J. Nahin ; with a new preface by the author. |
title_short | Dr. Euler's fabulous formula : |
title_sort | dr euler s fabulous formula cures many mathematical ills |
title_sub | cures many mathematical ills / |
topic | Numbers, Complex. http://id.loc.gov/authorities/subjects/sh85093211 Euler's numbers. http://id.loc.gov/authorities/subjects/sh85045553 Mathematics History. Nombres complexes. Intégrales eulériennes. Mathématiques Histoire. MATHEMATICS Number Theory. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Euler's numbers fast Mathematics fast Numbers, Complex fast |
topic_facet | Numbers, Complex. Euler's numbers. Mathematics History. Nombres complexes. Intégrales eulériennes. Mathématiques Histoire. MATHEMATICS Number Theory. MATHEMATICS Mathematical Analysis. Euler's numbers Mathematics Numbers, Complex History |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=362301 |
work_keys_str_mv | AT nahinpaulj dreulersfabulousformulacuresmanymathematicalills |