Weyl group multiple Dirichlet series :: type A combinatorial theory /
Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2011.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 175. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. |
Beschreibung: | 1 online resource (158 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 143-147) and index. |
ISBN: | 9781400838998 1400838991 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn713258718 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110419s2011 njua ob 001 0 eng d | ||
010 | |a 2010037073 | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d MHW |d YDXCP |d MTG |d CDX |d OCLCQ |d UMI |d COO |d OCLCQ |d DEBSZ |d JSTOR |d OCLCF |d OCLCQ |d UIU |d AGLDB |d ZCU |d MERUC |d OCLCQ |d IOG |d EZ9 |d VTS |d ICG |d VT2 |d CEF |d OCLCQ |d LVT |d UAB |d WYU |d STF |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d AJS |d HS0 |d OCLCQ |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d HOPLA | ||
019 | |a 773204699 |a 1055372859 |a 1063815493 |a 1103281710 |a 1129378821 |a 1153000293 | ||
020 | |a 9781400838998 |q (electronic bk.) | ||
020 | |a 1400838991 |q (electronic bk.) | ||
020 | |z 9780691150659 | ||
020 | |z 0691150656 | ||
020 | |z 9780691150666 | ||
020 | |z 0691150664 | ||
024 | 7 | |a 10.1515/9781400838998 |2 doi | |
035 | |a (OCoLC)713258718 |z (OCoLC)773204699 |z (OCoLC)1055372859 |z (OCoLC)1063815493 |z (OCoLC)1103281710 |z (OCoLC)1129378821 |z (OCoLC)1153000293 | ||
037 | |a CL0500000122 |b Safari Books Online | ||
037 | |a 22573/cttztnj |b JSTOR | ||
050 | 4 | |a QA295 |b .B876 2011eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT022000 |2 bisacsh | |
072 | 7 | |a MAT036000 |2 bisacsh | |
082 | 7 | |a 515/.243 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Brubaker, Ben, |d 1976- |1 https://id.oclc.org/worldcat/entity/E39PCjvkBbBGX9dgb3qYCDvMWC |0 http://id.loc.gov/authorities/names/n2010063152 | |
245 | 1 | 0 | |a Weyl group multiple Dirichlet series : |b type A combinatorial theory / |c Ben Brubaker, Daniel Bump, and Solomon Friedberg. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2011. | ||
300 | |a 1 online resource (158 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 175 | |
504 | |a Includes bibliographical references (pages 143-147) and index. | ||
520 | |a Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. | ||
588 | 0 | |a Print version record. | |
546 | |a In English. | ||
505 | 8 | |a 20. Crystals and p-adic IntegrationBibliography; Notation; Index | |
650 | 0 | |a Dirichlet series. |0 http://id.loc.gov/authorities/subjects/sh85120239 | |
650 | 0 | |a Weyl groups. |0 http://id.loc.gov/authorities/subjects/sh95002984 | |
650 | 6 | |a Séries de Dirichlet. | |
650 | 6 | |a Groupes de Weyl. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Dirichlet series |2 fast | |
650 | 7 | |a Weyl groups |2 fast | |
700 | 1 | |a Bump, Daniel, |d 1952- |1 https://id.oclc.org/worldcat/entity/E39PBJxMp93k8wHycjrbQgRqcP |0 http://id.loc.gov/authorities/names/n84041723 | |
700 | 1 | |a Friedberg, Solomon, |d 1958- |1 https://id.oclc.org/worldcat/entity/E39PBJvtcggvxdTTVqcgbm3RKd |0 http://id.loc.gov/authorities/names/no91026503 | |
758 | |i has work: |a Weyl group multiple Dirichlet series (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXq6KkvmPVVkFjVPbxHcq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Brubaker, Ben, 1976- |t Weyl group multiple Dirichlet. |d Princeton, N.J. : Princeton University Press, ©2011 |z 9780691150659 |w (DLC) 2010037073 |w (OCoLC)666489879 |
830 | 0 | |a Annals of mathematics studies ; |v no. 175. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=358317 |3 Volltext |
938 | |a hoopla Digital |b HOPL |n MWT13284087 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26387935 | ||
938 | |a Coutts Information Services |b COUT |n 17461668 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL664641 | ||
938 | |a EBSCOhost |b EBSC |n 358317 | ||
938 | |a YBP Library Services |b YANK |n 3639164 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn713258718 |
---|---|
_version_ | 1816881756633038848 |
adam_text | |
any_adam_object | |
author | Brubaker, Ben, 1976- |
author2 | Bump, Daniel, 1952- Friedberg, Solomon, 1958- |
author2_role | |
author2_variant | d b db s f sf |
author_GND | http://id.loc.gov/authorities/names/n2010063152 http://id.loc.gov/authorities/names/n84041723 http://id.loc.gov/authorities/names/no91026503 |
author_facet | Brubaker, Ben, 1976- Bump, Daniel, 1952- Friedberg, Solomon, 1958- |
author_role | |
author_sort | Brubaker, Ben, 1976- |
author_variant | b b bb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 .B876 2011eb |
callnumber-search | QA295 .B876 2011eb |
callnumber-sort | QA 3295 B876 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 20. Crystals and p-adic IntegrationBibliography; Notation; Index |
ctrlnum | (OCoLC)713258718 |
dewey-full | 515/.243 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.243 |
dewey-search | 515/.243 |
dewey-sort | 3515 3243 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04446cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn713258718</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110419s2011 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2010037073</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MTG</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">EZ9</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">VT2</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">UAB</subfield><subfield code="d">WYU</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">HOPLA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">773204699</subfield><subfield code="a">1055372859</subfield><subfield code="a">1063815493</subfield><subfield code="a">1103281710</subfield><subfield code="a">1129378821</subfield><subfield code="a">1153000293</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400838998</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400838991</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691150659</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691150656</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691150666</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691150664</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400838998</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)713258718</subfield><subfield code="z">(OCoLC)773204699</subfield><subfield code="z">(OCoLC)1055372859</subfield><subfield code="z">(OCoLC)1063815493</subfield><subfield code="z">(OCoLC)1103281710</subfield><subfield code="z">(OCoLC)1129378821</subfield><subfield code="z">(OCoLC)1153000293</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000122</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttztnj</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA295</subfield><subfield code="b">.B876 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.243</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brubaker, Ben,</subfield><subfield code="d">1976-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvkBbBGX9dgb3qYCDvMWC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2010063152</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Weyl group multiple Dirichlet series :</subfield><subfield code="b">type A combinatorial theory /</subfield><subfield code="c">Ben Brubaker, Daniel Bump, and Solomon Friedberg.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (158 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 175</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 143-147) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">20. Crystals and p-adic IntegrationBibliography; Notation; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dirichlet series.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120239</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Weyl groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95002984</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Séries de Dirichlet.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Weyl.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dirichlet series</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Weyl groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bump, Daniel,</subfield><subfield code="d">1952-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxMp93k8wHycjrbQgRqcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84041723</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedberg, Solomon,</subfield><subfield code="d">1958-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJvtcggvxdTTVqcgbm3RKd</subfield><subfield code="0">http://id.loc.gov/authorities/names/no91026503</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Weyl group multiple Dirichlet series (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXq6KkvmPVVkFjVPbxHcq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Brubaker, Ben, 1976-</subfield><subfield code="t">Weyl group multiple Dirichlet.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2011</subfield><subfield code="z">9780691150659</subfield><subfield code="w">(DLC) 2010037073</subfield><subfield code="w">(OCoLC)666489879</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 175.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=358317</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">hoopla Digital</subfield><subfield code="b">HOPL</subfield><subfield code="n">MWT13284087</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387935</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">17461668</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL664641</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">358317</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3639164</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn713258718 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:47Z |
institution | BVB |
isbn | 9781400838998 1400838991 |
language | English |
lccn | 2010037073 |
oclc_num | 713258718 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (158 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Brubaker, Ben, 1976- https://id.oclc.org/worldcat/entity/E39PCjvkBbBGX9dgb3qYCDvMWC http://id.loc.gov/authorities/names/n2010063152 Weyl group multiple Dirichlet series : type A combinatorial theory / Ben Brubaker, Daniel Bump, and Solomon Friedberg. Princeton, N.J. : Princeton University Press, ©2011. 1 online resource (158 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 175 Includes bibliographical references (pages 143-147) and index. Weyl group multiple Dirichlet series are generalizations of the Riemann zeta function. Like the Riemann zeta function, they are Dirichlet series with analytic continuation and functional equations, having applications to analytic number theory. By contrast, these Weyl group multiple Dirichlet series may be functions of several complex variables and their groups of functional equations may be arbitrary finite Weyl groups. Furthermore, their coefficients are multiplicative up to roots of unity, generalizing the notion of Euler products. This book proves foundational results about these series and develops their combinatorics. Print version record. In English. 20. Crystals and p-adic IntegrationBibliography; Notation; Index Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Weyl groups. http://id.loc.gov/authorities/subjects/sh95002984 Séries de Dirichlet. Groupes de Weyl. MATHEMATICS Infinity. bisacsh MATHEMATICS Number Theory. bisacsh Dirichlet series fast Weyl groups fast Bump, Daniel, 1952- https://id.oclc.org/worldcat/entity/E39PBJxMp93k8wHycjrbQgRqcP http://id.loc.gov/authorities/names/n84041723 Friedberg, Solomon, 1958- https://id.oclc.org/worldcat/entity/E39PBJvtcggvxdTTVqcgbm3RKd http://id.loc.gov/authorities/names/no91026503 has work: Weyl group multiple Dirichlet series (Text) https://id.oclc.org/worldcat/entity/E39PCGXq6KkvmPVVkFjVPbxHcq https://id.oclc.org/worldcat/ontology/hasWork Print version: Brubaker, Ben, 1976- Weyl group multiple Dirichlet. Princeton, N.J. : Princeton University Press, ©2011 9780691150659 (DLC) 2010037073 (OCoLC)666489879 Annals of mathematics studies ; no. 175. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=358317 Volltext |
spellingShingle | Brubaker, Ben, 1976- Weyl group multiple Dirichlet series : type A combinatorial theory / Annals of mathematics studies ; 20. Crystals and p-adic IntegrationBibliography; Notation; Index Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Weyl groups. http://id.loc.gov/authorities/subjects/sh95002984 Séries de Dirichlet. Groupes de Weyl. MATHEMATICS Infinity. bisacsh MATHEMATICS Number Theory. bisacsh Dirichlet series fast Weyl groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85120239 http://id.loc.gov/authorities/subjects/sh95002984 |
title | Weyl group multiple Dirichlet series : type A combinatorial theory / |
title_auth | Weyl group multiple Dirichlet series : type A combinatorial theory / |
title_exact_search | Weyl group multiple Dirichlet series : type A combinatorial theory / |
title_full | Weyl group multiple Dirichlet series : type A combinatorial theory / Ben Brubaker, Daniel Bump, and Solomon Friedberg. |
title_fullStr | Weyl group multiple Dirichlet series : type A combinatorial theory / Ben Brubaker, Daniel Bump, and Solomon Friedberg. |
title_full_unstemmed | Weyl group multiple Dirichlet series : type A combinatorial theory / Ben Brubaker, Daniel Bump, and Solomon Friedberg. |
title_short | Weyl group multiple Dirichlet series : |
title_sort | weyl group multiple dirichlet series type a combinatorial theory |
title_sub | type A combinatorial theory / |
topic | Dirichlet series. http://id.loc.gov/authorities/subjects/sh85120239 Weyl groups. http://id.loc.gov/authorities/subjects/sh95002984 Séries de Dirichlet. Groupes de Weyl. MATHEMATICS Infinity. bisacsh MATHEMATICS Number Theory. bisacsh Dirichlet series fast Weyl groups fast |
topic_facet | Dirichlet series. Weyl groups. Séries de Dirichlet. Groupes de Weyl. MATHEMATICS Infinity. MATHEMATICS Number Theory. Dirichlet series Weyl groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=358317 |
work_keys_str_mv | AT brubakerben weylgroupmultipledirichletseriestypeacombinatorialtheory AT bumpdaniel weylgroupmultipledirichletseriestypeacombinatorialtheory AT friedbergsolomon weylgroupmultipledirichletseriestypeacombinatorialtheory |