Permutation groups /:
Permutation groups are one of the oldest topics in algebra. However, their study has recently been revolutionised by new developments, particularly the classification of finite simple groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introdu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1999.
|
Schriftenreihe: | London Mathematical Society student texts ;
45. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Permutation groups are one of the oldest topics in algebra. However, their study has recently been revolutionised by new developments, particularly the classification of finite simple groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This book gives a summary of these developments, including an introduction to relevant computer algebra systems, sketch proofs of major theorems, and many examples of applying the classification of finite simple groups. It is aimed at beginning graduate students and experts in other areas, and grew from a short course at the EIDMA institute in Eindhoven. |
Beschreibung: | 1 online resource (x, 220 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 199-212) and index. |
ISBN: | 9780511623677 0511623674 9781107362765 1107362768 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn708565221 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 981001s1999 enka ob 001 0 eng d | ||
010 | |z 98045456 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d CAMBR |d N$T |d IDEBK |d OL$ |d YDXCP |d OCLCQ |d DEBSZ |d OCLCF |d YDX |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCO |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCQ |d STF |d OCLCQ |d K6U |d INARC |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 833198775 |a 846895296 |a 957303229 |a 957523902 |a 957636249 |a 1040678638 |a 1041484957 |a 1150987461 | ||
020 | |a 9780511623677 |q (electronic bk.) | ||
020 | |a 0511623674 |q (electronic bk.) | ||
020 | |a 9781107362765 |q (electronic bk.) | ||
020 | |a 1107362768 |q (electronic bk.) | ||
020 | |z 0521653029 | ||
020 | |z 0521653789 |q (pbk.) | ||
020 | |z 9780521653022 | ||
020 | |z 9780521653787 |q (pbk.) | ||
035 | |a (OCoLC)708565221 |z (OCoLC)833198775 |z (OCoLC)846895296 |z (OCoLC)957303229 |z (OCoLC)957523902 |z (OCoLC)957636249 |z (OCoLC)1040678638 |z (OCoLC)1041484957 |z (OCoLC)1150987461 | ||
050 | 4 | |a QA175 |b .C36 1999eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 21 | |
084 | |a SK 260 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Cameron, Peter J. |q (Peter Jephson), |d 1947- |1 https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 |0 http://id.loc.gov/authorities/names/n81072709 | |
245 | 1 | 0 | |a Permutation groups / |c Peter J. Cameron. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1999. | ||
300 | |a 1 online resource (x, 220 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 45 | |
504 | |a Includes bibliographical references (pages 199-212) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. General theory -- 2. Representation theory -- 3. Coherent configurations -- 4. The O'Nan-Scott Theorem -- 5. Oligomorphic groups -- 6. Miscellanea -- 7. Tables. | |
520 | |a Permutation groups are one of the oldest topics in algebra. However, their study has recently been revolutionised by new developments, particularly the classification of finite simple groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This book gives a summary of these developments, including an introduction to relevant computer algebra systems, sketch proofs of major theorems, and many examples of applying the classification of finite simple groups. It is aimed at beginning graduate students and experts in other areas, and grew from a short course at the EIDMA institute in Eindhoven. | ||
650 | 0 | |a Permutation groups. |0 http://id.loc.gov/authorities/subjects/sh85099993 | |
650 | 6 | |a Groupes de permutations. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Permutation groups |2 fast | |
650 | 7 | |a Permutationsgruppe |2 gnd | |
650 | 7 | |a Groupes de permutations. |2 ram | |
776 | 0 | 8 | |i Print version: |a Cameron, Peter J. (Peter Jephson), 1947- |t Permutation groups. |d Cambridge ; New York : Cambridge University Press, 1999 |w (DLC) 98045456 |
830 | 0 | |a London Mathematical Society student texts ; |v 45. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551348 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10443946 | ||
938 | |a EBSCOhost |b EBSC |n 551348 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25159373 | ||
938 | |a YBP Library Services |b YANK |n 10374354 | ||
938 | |a YBP Library Services |b YANK |n 3279598 | ||
938 | |a Internet Archive |b INAR |n permutationgroup0000came | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn708565221 |
---|---|
_version_ | 1816881754376503296 |
adam_text | |
any_adam_object | |
author | Cameron, Peter J. (Peter Jephson), 1947- |
author_GND | http://id.loc.gov/authorities/names/n81072709 |
author_facet | Cameron, Peter J. (Peter Jephson), 1947- |
author_role | |
author_sort | Cameron, Peter J. 1947- |
author_variant | p j c pj pjc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA175 |
callnumber-raw | QA175 .C36 1999eb |
callnumber-search | QA175 .C36 1999eb |
callnumber-sort | QA 3175 C36 41999EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
collection | ZDB-4-EBA |
contents | 1. General theory -- 2. Representation theory -- 3. Coherent configurations -- 4. The O'Nan-Scott Theorem -- 5. Oligomorphic groups -- 6. Miscellanea -- 7. Tables. |
ctrlnum | (OCoLC)708565221 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03842cam a2200637Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn708565221</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">981001s1999 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 98045456 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CAMBR</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OL$</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">833198775</subfield><subfield code="a">846895296</subfield><subfield code="a">957303229</subfield><subfield code="a">957523902</subfield><subfield code="a">957636249</subfield><subfield code="a">1040678638</subfield><subfield code="a">1041484957</subfield><subfield code="a">1150987461</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623677</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623674</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362765</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362768</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521653029</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521653789</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521653022</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521653787</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)708565221</subfield><subfield code="z">(OCoLC)833198775</subfield><subfield code="z">(OCoLC)846895296</subfield><subfield code="z">(OCoLC)957303229</subfield><subfield code="z">(OCoLC)957523902</subfield><subfield code="z">(OCoLC)957636249</subfield><subfield code="z">(OCoLC)1040678638</subfield><subfield code="z">(OCoLC)1041484957</subfield><subfield code="z">(OCoLC)1150987461</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA175</subfield><subfield code="b">.C36 1999eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cameron, Peter J.</subfield><subfield code="q">(Peter Jephson),</subfield><subfield code="d">1947-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81072709</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Permutation groups /</subfield><subfield code="c">Peter J. Cameron.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1999.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 220 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">45</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 199-212) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. General theory -- 2. Representation theory -- 3. Coherent configurations -- 4. The O'Nan-Scott Theorem -- 5. Oligomorphic groups -- 6. Miscellanea -- 7. Tables.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Permutation groups are one of the oldest topics in algebra. However, their study has recently been revolutionised by new developments, particularly the classification of finite simple groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This book gives a summary of these developments, including an introduction to relevant computer algebra systems, sketch proofs of major theorems, and many examples of applying the classification of finite simple groups. It is aimed at beginning graduate students and experts in other areas, and grew from a short course at the EIDMA institute in Eindhoven.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Permutation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099993</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de permutations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes de permutations.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cameron, Peter J. (Peter Jephson), 1947-</subfield><subfield code="t">Permutation groups.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1999</subfield><subfield code="w">(DLC) 98045456</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">45.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551348</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10443946</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">551348</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25159373</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10374354</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3279598</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">permutationgroup0000came</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn708565221 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:44Z |
institution | BVB |
isbn | 9780511623677 0511623674 9781107362765 1107362768 |
language | English |
oclc_num | 708565221 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 220 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Cameron, Peter J. (Peter Jephson), 1947- https://id.oclc.org/worldcat/entity/E39PBJr7Wp9w9KWmP9RdFyM773 http://id.loc.gov/authorities/names/n81072709 Permutation groups / Peter J. Cameron. Cambridge ; New York : Cambridge University Press, 1999. 1 online resource (x, 220 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 45 Includes bibliographical references (pages 199-212) and index. Print version record. 1. General theory -- 2. Representation theory -- 3. Coherent configurations -- 4. The O'Nan-Scott Theorem -- 5. Oligomorphic groups -- 6. Miscellanea -- 7. Tables. Permutation groups are one of the oldest topics in algebra. However, their study has recently been revolutionised by new developments, particularly the classification of finite simple groups, but also relations with logic and combinatorics, and importantly, computer algebra systems have been introduced that can deal with large permutation groups. This book gives a summary of these developments, including an introduction to relevant computer algebra systems, sketch proofs of major theorems, and many examples of applying the classification of finite simple groups. It is aimed at beginning graduate students and experts in other areas, and grew from a short course at the EIDMA institute in Eindhoven. Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutationsgruppe gnd Groupes de permutations. ram Print version: Cameron, Peter J. (Peter Jephson), 1947- Permutation groups. Cambridge ; New York : Cambridge University Press, 1999 (DLC) 98045456 London Mathematical Society student texts ; 45. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551348 Volltext |
spellingShingle | Cameron, Peter J. (Peter Jephson), 1947- Permutation groups / London Mathematical Society student texts ; 1. General theory -- 2. Representation theory -- 3. Coherent configurations -- 4. The O'Nan-Scott Theorem -- 5. Oligomorphic groups -- 6. Miscellanea -- 7. Tables. Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutationsgruppe gnd Groupes de permutations. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85099993 |
title | Permutation groups / |
title_auth | Permutation groups / |
title_exact_search | Permutation groups / |
title_full | Permutation groups / Peter J. Cameron. |
title_fullStr | Permutation groups / Peter J. Cameron. |
title_full_unstemmed | Permutation groups / Peter J. Cameron. |
title_short | Permutation groups / |
title_sort | permutation groups |
topic | Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Groupes de permutations. MATHEMATICS Group Theory. bisacsh Permutation groups fast Permutationsgruppe gnd Groupes de permutations. ram |
topic_facet | Permutation groups. Groupes de permutations. MATHEMATICS Group Theory. Permutation groups Permutationsgruppe |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551348 |
work_keys_str_mv | AT cameronpeterj permutationgroups |