Group theory :: birdtracks, Lie's, and exceptional groups /
If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt |
Beschreibung: | 1 online resource (xii, 273 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 243-258) and index. |
ISBN: | 9781400837670 1400837677 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn705945735 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110307s2008 njua ob 001 0 eng d | ||
010 | |z 2008062101 | ||
040 | |a N$T |b eng |e pn |c N$T |d EBLCP |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d MHW |d JSTOR |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d CHVBK |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d MERUC |d OCLCQ |d JBG |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCO |d LVT |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCA |d OCLCQ |d UKCRE |d MM9 |d AJS |d UWK |d UCW |d OCLCQ |d OCLCO |d S2H |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL | ||
015 | |a GBA859191 |2 bnb | ||
016 | 7 | |a 014595934 |2 Uk | |
019 | |a 961540980 |a 962634879 |a 988427623 |a 992026851 |a 994897809 |a 1037921456 |a 1038639366 |a 1055362290 |a 1058752605 |a 1062866076 |a 1062998460 |a 1153542128 |a 1181909948 |a 1228526907 |a 1391554681 | ||
020 | |a 9781400837670 |q (electronic bk.) | ||
020 | |a 1400837677 |q (electronic bk.) | ||
020 | |z 9780691118369 | ||
020 | |z 0691118361 | ||
035 | |a (OCoLC)705945735 |z (OCoLC)961540980 |z (OCoLC)962634879 |z (OCoLC)988427623 |z (OCoLC)992026851 |z (OCoLC)994897809 |z (OCoLC)1037921456 |z (OCoLC)1038639366 |z (OCoLC)1055362290 |z (OCoLC)1058752605 |z (OCoLC)1062866076 |z (OCoLC)1062998460 |z (OCoLC)1153542128 |z (OCoLC)1181909948 |z (OCoLC)1228526907 |z (OCoLC)1391554681 | ||
037 | |a 22573/cttzd71 |b JSTOR | ||
050 | 4 | |a QA174.2 |b .C85 2008eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
072 | 7 | |a SCI040000 |2 bisacsh | |
072 | 7 | |a SCI057000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a SK 260 |2 rvk | ||
084 | |a 22-02 |a 17-02 |a 17Bxx |a 20-01 |a 20B30 |a 20B35 |a 22Exx |a 81Rxx |a 81Q30 |a 81Vxx |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Cvitanović, Predrag. | |
245 | 1 | 0 | |a Group theory : |b birdtracks, Lie's, and exceptional groups / |c Predrag Cvitanović. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2008. | ||
300 | |a 1 online resource (xii, 273 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 243-258) and index. | ||
505 | 0 | |a A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic. | |
588 | 0 | |a Print version record. | |
520 | |a If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt | ||
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Group theory |2 fast | |
650 | 7 | |a Gruppentheorie |2 gnd | |
650 | 7 | |a Halbeinfache Lie-Algebra |2 gnd |0 http://d-nb.info/gnd/4193986-4 | |
650 | 7 | |a Lie-Gruppe |2 gnd |0 http://d-nb.info/gnd/4035695-4 | |
758 | |i has work: |a Group theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGcK3gXwMpYR9wdrkwtBj3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Cvitanović, Predrag. |t Group theory. |d Princeton, N.J. : Princeton University Press, ©2008 |z 9780691118369 |w (DLC) 2008062101 |w (OCoLC)213133467 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=355983 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073931 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL664560 | ||
938 | |a ebrary |b EBRY |n ebr10443134 | ||
938 | |a EBSCOhost |b EBSC |n 355983 | ||
938 | |a YBP Library Services |b YANK |n 3604917 | ||
938 | |a Internet Archive |b INAR |n grouptheorybirdt0000cvit | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn705945735 |
---|---|
_version_ | 1816881753310101505 |
adam_text | |
any_adam_object | |
author | Cvitanović, Predrag |
author_facet | Cvitanović, Predrag |
author_role | |
author_sort | Cvitanović, Predrag |
author_variant | p c pc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 .C85 2008eb |
callnumber-search | QA174.2 .C85 2008eb |
callnumber-sort | QA 3174.2 C85 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
collection | ZDB-4-EBA |
contents | A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic. |
ctrlnum | (OCoLC)705945735 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04800cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn705945735</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110307s2008 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2008062101</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CHVBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">UCW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S2H</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA859191</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014595934</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961540980</subfield><subfield code="a">962634879</subfield><subfield code="a">988427623</subfield><subfield code="a">992026851</subfield><subfield code="a">994897809</subfield><subfield code="a">1037921456</subfield><subfield code="a">1038639366</subfield><subfield code="a">1055362290</subfield><subfield code="a">1058752605</subfield><subfield code="a">1062866076</subfield><subfield code="a">1062998460</subfield><subfield code="a">1153542128</subfield><subfield code="a">1181909948</subfield><subfield code="a">1228526907</subfield><subfield code="a">1391554681</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837670</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837677</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691118369</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691118361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705945735</subfield><subfield code="z">(OCoLC)961540980</subfield><subfield code="z">(OCoLC)962634879</subfield><subfield code="z">(OCoLC)988427623</subfield><subfield code="z">(OCoLC)992026851</subfield><subfield code="z">(OCoLC)994897809</subfield><subfield code="z">(OCoLC)1037921456</subfield><subfield code="z">(OCoLC)1038639366</subfield><subfield code="z">(OCoLC)1055362290</subfield><subfield code="z">(OCoLC)1058752605</subfield><subfield code="z">(OCoLC)1062866076</subfield><subfield code="z">(OCoLC)1062998460</subfield><subfield code="z">(OCoLC)1153542128</subfield><subfield code="z">(OCoLC)1181909948</subfield><subfield code="z">(OCoLC)1228526907</subfield><subfield code="z">(OCoLC)1391554681</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttzd71</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA174.2</subfield><subfield code="b">.C85 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI057000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22-02</subfield><subfield code="a">17-02</subfield><subfield code="a">17Bxx</subfield><subfield code="a">20-01</subfield><subfield code="a">20B30</subfield><subfield code="a">20B35</subfield><subfield code="a">22Exx</subfield><subfield code="a">81Rxx</subfield><subfield code="a">81Q30</subfield><subfield code="a">81Vxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cvitanović, Predrag.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theory :</subfield><subfield code="b">birdtracks, Lie's, and exceptional groups /</subfield><subfield code="c">Predrag Cvitanović.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 273 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 243-258) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Halbeinfache Lie-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4193986-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4035695-4</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Group theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGcK3gXwMpYR9wdrkwtBj3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cvitanović, Predrag.</subfield><subfield code="t">Group theory.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2008</subfield><subfield code="z">9780691118369</subfield><subfield code="w">(DLC) 2008062101</subfield><subfield code="w">(OCoLC)213133467</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=355983</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073931</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL664560</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10443134</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">355983</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3604917</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">grouptheorybirdt0000cvit</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn705945735 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:43Z |
institution | BVB |
isbn | 9781400837670 1400837677 |
language | English |
oclc_num | 705945735 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 273 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Cvitanović, Predrag. Group theory : birdtracks, Lie's, and exceptional groups / Predrag Cvitanović. Princeton, N.J. : Princeton University Press, ©2008. 1 online resource (xii, 273 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 243-258) and index. A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic. Print version record. If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdt Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Théorie des groupes. MATHEMATICS Group Theory. bisacsh Group theory fast Gruppentheorie gnd Halbeinfache Lie-Algebra gnd http://d-nb.info/gnd/4193986-4 Lie-Gruppe gnd http://d-nb.info/gnd/4035695-4 has work: Group theory (Text) https://id.oclc.org/worldcat/entity/E39PCGcK3gXwMpYR9wdrkwtBj3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Cvitanović, Predrag. Group theory. Princeton, N.J. : Princeton University Press, ©2008 9780691118369 (DLC) 2008062101 (OCoLC)213133467 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=355983 Volltext |
spellingShingle | Cvitanović, Predrag Group theory : birdtracks, Lie's, and exceptional groups / A preview -- Invariants and reducibility -- Diagrammatic notation -- Recouplings -- Permutations -- Casimir operators -- Group integrals -- Unitary groups / P. Cvitanovic, H. Elvang, and A.D. Kennedy -- Orthogonal groups -- Spinors / P. Cvitanovic and A.D. Kennedy -- Symplectic groups -- Negative dimensions / P. Cvitanovic and A.D. Kennedy -- Spinors' symplectic sisters / P. Cvitanovic and A.D. Kennedy -- SU(n) family of invariance groups -- G₂ family of invariance groups -- E family of invariance groups -- E₆ family of invariance groups -- F₄ family of invariance groups -- E-- family and its negative-dimensional cousins -- Exceptional magic -- Appendix A: Recursive decomposition -- Appendix B: Properties of young projections / H. Elvang and P. Cvitanovic. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Théorie des groupes. MATHEMATICS Group Theory. bisacsh Group theory fast Gruppentheorie gnd Halbeinfache Lie-Algebra gnd http://d-nb.info/gnd/4193986-4 Lie-Gruppe gnd http://d-nb.info/gnd/4035695-4 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85057512 http://d-nb.info/gnd/4193986-4 http://d-nb.info/gnd/4035695-4 |
title | Group theory : birdtracks, Lie's, and exceptional groups / |
title_auth | Group theory : birdtracks, Lie's, and exceptional groups / |
title_exact_search | Group theory : birdtracks, Lie's, and exceptional groups / |
title_full | Group theory : birdtracks, Lie's, and exceptional groups / Predrag Cvitanović. |
title_fullStr | Group theory : birdtracks, Lie's, and exceptional groups / Predrag Cvitanović. |
title_full_unstemmed | Group theory : birdtracks, Lie's, and exceptional groups / Predrag Cvitanović. |
title_short | Group theory : |
title_sort | group theory birdtracks lie s and exceptional groups |
title_sub | birdtracks, Lie's, and exceptional groups / |
topic | Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Théorie des groupes. MATHEMATICS Group Theory. bisacsh Group theory fast Gruppentheorie gnd Halbeinfache Lie-Algebra gnd http://d-nb.info/gnd/4193986-4 Lie-Gruppe gnd http://d-nb.info/gnd/4035695-4 |
topic_facet | Group theory. Théorie des groupes. MATHEMATICS Group Theory. Group theory Gruppentheorie Halbeinfache Lie-Algebra Lie-Gruppe |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=355983 |
work_keys_str_mv | AT cvitanovicpredrag grouptheorybirdtracksliesandexceptionalgroups |