Matrices, moments, and quadrature with applications /:
This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms.
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Princeton, N.J. ; Oxford :
Princeton University Press,
[2010]
|
Series: | Princeton series in applied mathematics.
|
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. |
Physical Description: | 1 online resource (ix, 363 pages) : illustrations |
Bibliography: | Includes bibliographical references (pages 335-359) and index. |
ISBN: | 9781400833887 1400833884 1282458019 9781282458017 |
Staff View
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn697182001 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110117t20102010njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d UBF |d E7B |d YDXCP |d OCLCQ |d CDX |d EBLCP |d IDEBK |d OCLCQ |d REDDC |d OCLCQ |d MERUC |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d DKDLA |d NLGGC |d OCLCQ |d GZM |d LOA |d OCLCO |d JBG |d OCLCA |d UIU |d TOA |d OCLCO |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d NRAMU |d ICG |d OCLCQ |d INT |d OCLCA |d VT2 |d AU@ |d OCLCO |d OCLCQ |d LVT |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d UX1 |d OCLCQ |d K6U |d OCLCQ |d MM9 |d AJS |d OCLCQ |d IEEEE |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
016 | 7 | |a 015402531 |2 Uk | |
019 | |a 587078425 |a 647875310 |a 694146590 |a 816362402 |a 961638915 |a 962624210 |a 966265209 |a 988455090 |a 992034959 |a 994946764 |a 1037919727 |a 1038673892 |a 1045549150 |a 1055394856 | ||
020 | |a 9781400833887 |q (electronic bk.) | ||
020 | |a 1400833884 |q (electronic bk.) | ||
020 | |a 1282458019 | ||
020 | |a 9781282458017 | ||
020 | |z 9780691143415 | ||
020 | |z 0691143412 | ||
024 | 8 | |a 9786612458019 | |
035 | |a (OCoLC)697182001 |z (OCoLC)587078425 |z (OCoLC)647875310 |z (OCoLC)694146590 |z (OCoLC)816362402 |z (OCoLC)961638915 |z (OCoLC)962624210 |z (OCoLC)966265209 |z (OCoLC)988455090 |z (OCoLC)992034959 |z (OCoLC)994946764 |z (OCoLC)1037919727 |z (OCoLC)1038673892 |z (OCoLC)1045549150 |z (OCoLC)1055394856 | ||
037 | |a 245801 |b MIL | ||
037 | |a 22573/cttvzfj |b JSTOR | ||
037 | |a 9452341 |b IEEE | ||
050 | 4 | |a QA188 |b .G65 2010eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
072 | 7 | |a MAT003000 |2 bisacsh | |
072 | 7 | |a MAT019000 |2 bisacsh | |
072 | 7 | |a COM014000 |2 bisacsh | |
072 | 7 | |a MAT002050 |2 bisacsh | |
072 | 7 | |a PB |2 bicssc | |
082 | 7 | |a 512.9434 |2 22 | |
084 | |a SK 915 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Golub, Gene H. |q (Gene Howard), |d 1932-2007. |1 https://id.oclc.org/worldcat/entity/E39PBJt8gwHDdkpyjk6CccPxXd |0 http://id.loc.gov/authorities/names/n83005601 | |
245 | 1 | 0 | |a Matrices, moments, and quadrature with applications / |c Gene H. Golub and Gérard Meurant. |
264 | 1 | |a Princeton, N.J. ; |a Oxford : |b Princeton University Press, |c [2010] | |
264 | 4 | |c ©2010 | |
300 | |a 1 online resource (ix, 363 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton series in applied mathematics | |
504 | |a Includes bibliographical references (pages 335-359) and index. | ||
520 | 8 | |a This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices. | |
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 0 | |a Numerical analysis. |0 http://id.loc.gov/authorities/subjects/sh85093237 | |
650 | 6 | |a Matrices. | |
650 | 6 | |a Analyse numérique. | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a Matrices |2 fast | |
650 | 7 | |a Numerical analysis |2 fast | |
650 | 7 | |a Algorithmus |2 gnd |0 http://d-nb.info/gnd/4001183-5 | |
650 | 7 | |a Bilinearform |2 gnd |0 http://d-nb.info/gnd/4138018-6 | |
650 | 7 | |a Matrix |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4037968-1 | |
650 | 7 | |a Numerisches Verfahren |2 gnd |0 http://d-nb.info/gnd/4128130-5 | |
650 | 7 | |a Orthogonale Polynome |2 gnd | |
650 | 7 | |a Matrix |x (Math.) |x Numerische Mathematik. |2 idsbb | |
650 | 7 | |a Numerische Mathematik |x Matrix (Math.) |2 idsbb | |
653 | |a Algorithm. | ||
653 | |a Analysis of algorithms. | ||
653 | |a Analytic function. | ||
653 | |a Asymptotic analysis. | ||
653 | |a Basis (linear algebra). | ||
653 | |a Basis function. | ||
653 | |a Biconjugate gradient method. | ||
653 | |a Bidiagonal matrix. | ||
653 | |a Bilinear form. | ||
653 | |a Calculation. | ||
653 | |a Characteristic polynomial. | ||
653 | |a Chebyshev polynomials. | ||
653 | |a Coefficient. | ||
653 | |a Complex number. | ||
653 | |a Computation. | ||
653 | |a Condition number. | ||
653 | |a Conjugate gradient method. | ||
653 | |a Conjugate transpose. | ||
653 | |a Cross-validation (statistics). | ||
653 | |a Curve fitting. | ||
653 | |a Degeneracy (mathematics). | ||
653 | |a Determinant. | ||
653 | |a Diagonal matrix. | ||
653 | |a Dimension (vector space). | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Equation. | ||
653 | |a Estimation. | ||
653 | |a Estimator. | ||
653 | |a Exponential function. | ||
653 | |a Factorization. | ||
653 | |a Function (mathematics). | ||
653 | |a Function of a real variable. | ||
653 | |a Functional analysis. | ||
653 | |a Gaussian quadrature. | ||
653 | |a Hankel matrix. | ||
653 | |a Hermite interpolation. | ||
653 | |a Hessenberg matrix. | ||
653 | |a Hilbert matrix. | ||
653 | |a Holomorphic function. | ||
653 | |a Identity matrix. | ||
653 | |a Interlacing (bitmaps). | ||
653 | |a Inverse iteration. | ||
653 | |a Inverse problem. | ||
653 | |a Invertible matrix. | ||
653 | |a Iteration. | ||
653 | |a Iterative method. | ||
653 | |a Jacobi matrix. | ||
653 | |a Krylov subspace. | ||
653 | |a Laguerre polynomials. | ||
653 | |a Lanczos algorithm. | ||
653 | |a Linear differential equation. | ||
653 | |a Linear regression. | ||
653 | |a Linear subspace. | ||
653 | |a Logarithm. | ||
653 | |a Machine epsilon. | ||
653 | |a Matrix function. | ||
653 | |a Matrix polynomial. | ||
653 | |a Maxima and minima. | ||
653 | |a Mean value theorem. | ||
653 | |a Meromorphic function. | ||
653 | |a Moment (mathematics). | ||
653 | |a Moment matrix. | ||
653 | |a Moment problem. | ||
653 | |a Monic polynomial. | ||
653 | |a Monomial. | ||
653 | |a Monotonic function. | ||
653 | |a Newton's method. | ||
653 | |a Numerical analysis. | ||
653 | |a Numerical integration. | ||
653 | |a Numerical linear algebra. | ||
653 | |a Orthogonal basis. | ||
653 | |a Orthogonal matrix. | ||
653 | |a Orthogonal polynomials. | ||
653 | |a Orthogonal transformation. | ||
653 | |a Orthogonality. | ||
653 | |a Orthogonalization. | ||
653 | |a Orthonormal basis. | ||
653 | |a Partial fraction decomposition. | ||
653 | |a Polynomial. | ||
653 | |a Preconditioner. | ||
653 | |a QR algorithm. | ||
653 | |a QR decomposition. | ||
653 | |a Quadratic form. | ||
653 | |a Rate of convergence. | ||
653 | |a Recurrence relation. | ||
653 | |a Regularization (mathematics). | ||
653 | |a Rotation matrix. | ||
653 | |a Singular value. | ||
653 | |a Square (algebra). | ||
653 | |a Summation. | ||
653 | |a Symmetric matrix. | ||
653 | |a Theorem. | ||
653 | |a Tikhonov regularization. | ||
653 | |a Trace (linear algebra). | ||
653 | |a Triangular matrix. | ||
653 | |a Tridiagonal matrix. | ||
653 | |a Upper and lower bounds. | ||
653 | |a Variable (mathematics). | ||
653 | |a Vector space. | ||
653 | |a Weight function. | ||
700 | 1 | |a Meurant, Gérard A. | |
758 | |i has work: |a Matrices, moments, and quadrature with applications (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGbfcbtjwCC8q7qyHJPG73 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Golub, Gene H. (Gene Howard), 1932-2007. |t Matrices, moments, and quadrature with applications. |d Princeton, N.J. ; Oxford : Princeton University Press, ©2010 |z 9780691143415 |w (OCoLC)461270987 |
830 | 0 | |a Princeton series in applied mathematics. |0 http://id.loc.gov/authorities/names/no2002046464 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=350080 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=350080 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073729 | ||
938 | |a Coutts Information Services |b COUT |n 12123208 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4968574 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL483513 | ||
938 | |a ebrary |b EBRY |n ebr10364784 | ||
938 | |a EBSCOhost |b EBSC |n 350080 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 245801 | ||
938 | |a YBP Library Services |b YANK |n 3340396 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn697182001 |
---|---|
_version_ | 1829094687854559232 |
adam_text | |
any_adam_object | |
author | Golub, Gene H. (Gene Howard), 1932-2007 |
author2 | Meurant, Gérard A. |
author2_role | |
author2_variant | g a m ga gam |
author_GND | http://id.loc.gov/authorities/names/n83005601 |
author_facet | Golub, Gene H. (Gene Howard), 1932-2007 Meurant, Gérard A. |
author_role | |
author_sort | Golub, Gene H. 1932-2007 |
author_variant | g h g gh ghg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .G65 2010eb |
callnumber-search | QA188 .G65 2010eb |
callnumber-sort | QA 3188 G65 42010EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 915 |
collection | ZDB-4-EBA |
contents | Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices. |
ctrlnum | (OCoLC)697182001 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08810cam a2202089 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn697182001</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110117t20102010njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">UBF</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">GZM</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UIU</subfield><subfield code="d">TOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCA</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UX1</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015402531</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">587078425</subfield><subfield code="a">647875310</subfield><subfield code="a">694146590</subfield><subfield code="a">816362402</subfield><subfield code="a">961638915</subfield><subfield code="a">962624210</subfield><subfield code="a">966265209</subfield><subfield code="a">988455090</subfield><subfield code="a">992034959</subfield><subfield code="a">994946764</subfield><subfield code="a">1037919727</subfield><subfield code="a">1038673892</subfield><subfield code="a">1045549150</subfield><subfield code="a">1055394856</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400833887</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400833884</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282458019</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282458017</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691143415</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691143412</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612458019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)697182001</subfield><subfield code="z">(OCoLC)587078425</subfield><subfield code="z">(OCoLC)647875310</subfield><subfield code="z">(OCoLC)694146590</subfield><subfield code="z">(OCoLC)816362402</subfield><subfield code="z">(OCoLC)961638915</subfield><subfield code="z">(OCoLC)962624210</subfield><subfield code="z">(OCoLC)966265209</subfield><subfield code="z">(OCoLC)988455090</subfield><subfield code="z">(OCoLC)992034959</subfield><subfield code="z">(OCoLC)994946764</subfield><subfield code="z">(OCoLC)1037919727</subfield><subfield code="z">(OCoLC)1038673892</subfield><subfield code="z">(OCoLC)1045549150</subfield><subfield code="z">(OCoLC)1055394856</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">245801</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttvzfj</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9452341</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.G65 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PB</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 915</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Golub, Gene H.</subfield><subfield code="q">(Gene Howard),</subfield><subfield code="d">1932-2007.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJt8gwHDdkpyjk6CccPxXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83005601</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrices, moments, and quadrature with applications /</subfield><subfield code="c">Gene H. Golub and Gérard Meurant.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J. ;</subfield><subfield code="a">Oxford :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">[2010]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 363 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 335-359) and index.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numerical analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093237</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse numérique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001183-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bilinearform</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4138018-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4037968-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128130-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonale Polynome</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrix</subfield><subfield code="x">(Math.)</subfield><subfield code="x">Numerische Mathematik.</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="x">Matrix (Math.)</subfield><subfield code="2">idsbb</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analysis of algorithms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Asymptotic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Basis (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Basis function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biconjugate gradient method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bidiagonal matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bilinear form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calculation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characteristic polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chebyshev polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coefficient.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Condition number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conjugate gradient method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Conjugate transpose.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cross-validation (statistics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Curve fitting.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Degeneracy (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Determinant.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagonal matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Estimation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Estimator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Exponential function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Factorization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function of a real variable.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Functional analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gaussian quadrature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hankel matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hermite interpolation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hessenberg matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hilbert matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Holomorphic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Identity matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Interlacing (bitmaps).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inverse iteration.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inverse problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Invertible matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Iteration.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Iterative method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Jacobi matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Krylov subspace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Laguerre polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lanczos algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear differential equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear regression.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear subspace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Logarithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine epsilon.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maxima and minima.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mean value theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Meromorphic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moment (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moment matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Moment problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monic polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monotonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Newton's method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Numerical analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Numerical integration.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Numerical linear algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal polynomials.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal transformation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonalization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthonormal basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial fraction decomposition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Preconditioner.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">QR algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">QR decomposition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quadratic form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rate of convergence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Recurrence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Regularization (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rotation matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Singular value.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Square (algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Summation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Symmetric matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tikhonov regularization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trace (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Triangular matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tridiagonal matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Upper and lower bounds.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weight function.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meurant, Gérard A.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Matrices, moments, and quadrature with applications (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGbfcbtjwCC8q7qyHJPG73</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Golub, Gene H. (Gene Howard), 1932-2007.</subfield><subfield code="t">Matrices, moments, and quadrature with applications.</subfield><subfield code="d">Princeton, N.J. ; Oxford : Princeton University Press, ©2010</subfield><subfield code="z">9780691143415</subfield><subfield code="w">(OCoLC)461270987</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton series in applied mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002046464</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=350080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=350080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073729</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">12123208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4968574</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL483513</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10364784</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">350080</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">245801</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3340396</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn697182001 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:37:06Z |
institution | BVB |
isbn | 9781400833887 1400833884 1282458019 9781282458017 |
language | English |
oclc_num | 697182001 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 363 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Princeton University Press, |
record_format | marc |
series | Princeton series in applied mathematics. |
series2 | Princeton series in applied mathematics |
spelling | Golub, Gene H. (Gene Howard), 1932-2007. https://id.oclc.org/worldcat/entity/E39PBJt8gwHDdkpyjk6CccPxXd http://id.loc.gov/authorities/names/n83005601 Matrices, moments, and quadrature with applications / Gene H. Golub and Gérard Meurant. Princeton, N.J. ; Oxford : Princeton University Press, [2010] ©2010 1 online resource (ix, 363 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Princeton series in applied mathematics Includes bibliographical references (pages 335-359) and index. This computationally oriented work describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. Print version record. Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Numerical analysis. http://id.loc.gov/authorities/subjects/sh85093237 Matrices. Analyse numérique. MATHEMATICS Matrices. bisacsh MATHEMATICS Applied. bisacsh Matrices fast Numerical analysis fast Algorithmus gnd http://d-nb.info/gnd/4001183-5 Bilinearform gnd http://d-nb.info/gnd/4138018-6 Matrix Mathematik gnd http://d-nb.info/gnd/4037968-1 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Orthogonale Polynome gnd Matrix (Math.) Numerische Mathematik. idsbb Numerische Mathematik Matrix (Math.) idsbb Algorithm. Analysis of algorithms. Analytic function. Asymptotic analysis. Basis (linear algebra). Basis function. Biconjugate gradient method. Bidiagonal matrix. Bilinear form. Calculation. Characteristic polynomial. Chebyshev polynomials. Coefficient. Complex number. Computation. Condition number. Conjugate gradient method. Conjugate transpose. Cross-validation (statistics). Curve fitting. Degeneracy (mathematics). Determinant. Diagonal matrix. Dimension (vector space). Eigenvalues and eigenvectors. Equation. Estimation. Estimator. Exponential function. Factorization. Function (mathematics). Function of a real variable. Functional analysis. Gaussian quadrature. Hankel matrix. Hermite interpolation. Hessenberg matrix. Hilbert matrix. Holomorphic function. Identity matrix. Interlacing (bitmaps). Inverse iteration. Inverse problem. Invertible matrix. Iteration. Iterative method. Jacobi matrix. Krylov subspace. Laguerre polynomials. Lanczos algorithm. Linear differential equation. Linear regression. Linear subspace. Logarithm. Machine epsilon. Matrix function. Matrix polynomial. Maxima and minima. Mean value theorem. Meromorphic function. Moment (mathematics). Moment matrix. Moment problem. Monic polynomial. Monomial. Monotonic function. Newton's method. Numerical analysis. Numerical integration. Numerical linear algebra. Orthogonal basis. Orthogonal matrix. Orthogonal polynomials. Orthogonal transformation. Orthogonality. Orthogonalization. Orthonormal basis. Partial fraction decomposition. Polynomial. Preconditioner. QR algorithm. QR decomposition. Quadratic form. Rate of convergence. Recurrence relation. Regularization (mathematics). Rotation matrix. Singular value. Square (algebra). Summation. Symmetric matrix. Theorem. Tikhonov regularization. Trace (linear algebra). Triangular matrix. Tridiagonal matrix. Upper and lower bounds. Variable (mathematics). Vector space. Weight function. Meurant, Gérard A. has work: Matrices, moments, and quadrature with applications (Text) https://id.oclc.org/worldcat/entity/E39PCGbfcbtjwCC8q7qyHJPG73 https://id.oclc.org/worldcat/ontology/hasWork Print version: Golub, Gene H. (Gene Howard), 1932-2007. Matrices, moments, and quadrature with applications. Princeton, N.J. ; Oxford : Princeton University Press, ©2010 9780691143415 (OCoLC)461270987 Princeton series in applied mathematics. http://id.loc.gov/authorities/names/no2002046464 |
spellingShingle | Golub, Gene H. (Gene Howard), 1932-2007 Matrices, moments, and quadrature with applications / Princeton series in applied mathematics. Preliminaries; Contents; Preface; Chapter 1. Introduction; Chapter 2. Orthogonal Polynomials; Chapter 3. Properties of Tridiagonal Matrices; Chapter 4. The Lanczos and Conjugate Gradient Algorithms; Chapter 5. Computation of the Jacobi Matrices; Chapter 6. Gauss Quadrature; Chapter 7. Bounds for Bilinear Forms uT f(A)v; Chapter 8. Extensions to Nonsymmetric Matrices; Chapter 9. Solving Secular Equations; Chapter 10. Examples of Gauss Quadrature Rules; Chapter 11. Bounds and Estimates for Elements of Functions of Matrices. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Numerical analysis. http://id.loc.gov/authorities/subjects/sh85093237 Matrices. Analyse numérique. MATHEMATICS Matrices. bisacsh MATHEMATICS Applied. bisacsh Matrices fast Numerical analysis fast Algorithmus gnd http://d-nb.info/gnd/4001183-5 Bilinearform gnd http://d-nb.info/gnd/4138018-6 Matrix Mathematik gnd http://d-nb.info/gnd/4037968-1 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Orthogonale Polynome gnd Matrix (Math.) Numerische Mathematik. idsbb Numerische Mathematik Matrix (Math.) idsbb |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082210 http://id.loc.gov/authorities/subjects/sh85093237 http://d-nb.info/gnd/4001183-5 http://d-nb.info/gnd/4138018-6 http://d-nb.info/gnd/4037968-1 http://d-nb.info/gnd/4128130-5 |
title | Matrices, moments, and quadrature with applications / |
title_auth | Matrices, moments, and quadrature with applications / |
title_exact_search | Matrices, moments, and quadrature with applications / |
title_full | Matrices, moments, and quadrature with applications / Gene H. Golub and Gérard Meurant. |
title_fullStr | Matrices, moments, and quadrature with applications / Gene H. Golub and Gérard Meurant. |
title_full_unstemmed | Matrices, moments, and quadrature with applications / Gene H. Golub and Gérard Meurant. |
title_short | Matrices, moments, and quadrature with applications / |
title_sort | matrices moments and quadrature with applications |
topic | Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Numerical analysis. http://id.loc.gov/authorities/subjects/sh85093237 Matrices. Analyse numérique. MATHEMATICS Matrices. bisacsh MATHEMATICS Applied. bisacsh Matrices fast Numerical analysis fast Algorithmus gnd http://d-nb.info/gnd/4001183-5 Bilinearform gnd http://d-nb.info/gnd/4138018-6 Matrix Mathematik gnd http://d-nb.info/gnd/4037968-1 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Orthogonale Polynome gnd Matrix (Math.) Numerische Mathematik. idsbb Numerische Mathematik Matrix (Math.) idsbb |
topic_facet | Matrices. Numerical analysis. Analyse numérique. MATHEMATICS Matrices. MATHEMATICS Applied. Matrices Numerical analysis Algorithmus Bilinearform Matrix Mathematik Numerisches Verfahren Orthogonale Polynome Matrix (Math.) Numerische Mathematik. Numerische Mathematik Matrix (Math.) |
work_keys_str_mv | AT golubgeneh matricesmomentsandquadraturewithapplications AT meurantgerarda matricesmomentsandquadraturewithapplications |