Topological library.: Part 2, Characteristic classes and smooth structures on manifolds /
This is the second of a three-volume set collecting the original and now-classic works in topology written during the 1950s-1960s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of method...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English Russian Multiple |
Veröffentlicht: |
Hackensack, N.J. :
World Scientific,
©2010.
|
Schriftenreihe: | K & E series on knots and everything ;
v. 44. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the second of a three-volume set collecting the original and now-classic works in topology written during the 1950s-1960s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "singular homologies of fiber spaces." Sample Chapter(s) Chapter 1: On manifolds homeomorphic to the 7-sphere1 (153 KB) Contents: <ul><li>On Manifolds Homeomorphic to the 7-Sphere ) |
Beschreibung: | 1 online resource (xiv, 261 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812836878 981283687X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn696138885 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110111s2010 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d INT |d OCLCQ |d M8D |d VT2 |d HS0 |d UKCRE |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 694144110 |a 712995015 |a 764546158 |a 889088239 |a 961560099 |a 962622998 |a 988409508 |a 991988639 |a 1037716311 |a 1038647508 |a 1107341495 |a 1153558370 |a 1228561945 |a 1249251181 | ||
020 | |a 9789812836878 |q (electronic bk.) | ||
020 | |a 981283687X |q (electronic bk.) | ||
020 | |z 9789812705594 | ||
020 | |z 9812705597 | ||
020 | |z 9789812836861 | ||
020 | |z 9812836861 | ||
035 | |a (OCoLC)696138885 |z (OCoLC)694144110 |z (OCoLC)712995015 |z (OCoLC)764546158 |z (OCoLC)889088239 |z (OCoLC)961560099 |z (OCoLC)962622998 |z (OCoLC)988409508 |z (OCoLC)991988639 |z (OCoLC)1037716311 |z (OCoLC)1038647508 |z (OCoLC)1107341495 |z (OCoLC)1153558370 |z (OCoLC)1228561945 |z (OCoLC)1249251181 | ||
041 | 1 | |a eng |h rus |h mul | |
050 | 4 | |a QA613.66 |b .T67eb vol. 2 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.72 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Topological library. |n Part 2, |p Characteristic classes and smooth structures on manifolds / |c editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov. |
246 | 3 | 0 | |a Characteristic classes and smooth structures on manifolds |
260 | |a Hackensack, N.J. : |b World Scientific, |c ©2010. | ||
300 | |a 1 online resource (xiv, 261 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a K & E series on knots and everything ; |v v. 44 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 8 | |a 10. Varying smooth structure and keeping the triangulation preserved. Morse surgeryChapter III. Corollaries and applications; 11. Smooth structures on Cartesian product of spheres; 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 7; 13. Connected sum of a manifold with Milnor's sphere; 14. Normal bundles of smooth manifolds; Appendix 1. Homotopy type and Pontrjagin classes; Appendix 2. Combinatorial equivalence and Milnor's microbundle theory; Appendix 3. On groups ; Appendix 4. Embedding of homotopy spheres into Euclidean space and the suspension stable homomorphism | |
505 | 8 | |a Introduction 1. Formulation of results; 2. The proof scheme of main theorems; 3. A geometrical lemma; 4. An analog of the Hurewicz theorem; 5. The functor P = Homc and its application to the study of homology properties of degree one maps; 6. Stably freeness of kernel modules under the assumptions of Theorem 3; 7. The homology effect of a Morse surgery; 8. Proof of Theorem 3; 9. Proof of Theorem 6; 10. One generalization of Theorem 5; Appendix 1. On the signature formula; Appendix 2. Unsolved questions concerning characteristic class theory | |
520 | |a This is the second of a three-volume set collecting the original and now-classic works in topology written during the 1950s-1960s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "singular homologies of fiber spaces." Sample Chapter(s) Chapter 1: On manifolds homeomorphic to the 7-sphere1 (153 KB) Contents: <ul><li>On Manifolds Homeomorphic to the 7-Sphere ) | ||
650 | 0 | |a Characteristic classes. |0 http://id.loc.gov/authorities/subjects/sh85022622 | |
650 | 0 | |a Differential topology. |0 http://id.loc.gov/authorities/subjects/sh85037923 | |
650 | 6 | |a Classes caractéristiques. | |
650 | 6 | |a Topologie différentielle. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Characteristic classes |2 fast | |
650 | 7 | |a Differential topology |2 fast | |
700 | 1 | |a Novikov, S. P. |q (Sergeĭ Petrovich) |1 https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3 |0 http://id.loc.gov/authorities/names/n80163746 | |
700 | 1 | |a Taĭmanov, I. A. |q (Iskander Asanovich), |d 1961- |1 https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C |0 http://id.loc.gov/authorities/names/n2006040009 | |
758 | |i has work: |a Part 2 Topological library Characteristic classes and smooth structures on manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFWFBgKVXhgTWCDBB79hVy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Topological library. |d Hackensack, N.J. : World Scientific, ©2007-<c2010> |z 9789812705594 |w (DLC) 2007016753 |w (OCoLC)123485622 |
830 | 0 | |a K & E series on knots and everything ; |v v. 44. |0 http://id.loc.gov/authorities/names/n91052105 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340593 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10422058 | ||
938 | |a EBSCOhost |b EBSC |n 340593 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn696138885 |
---|---|
_version_ | 1816881748826390528 |
adam_text | |
any_adam_object | |
author2 | Novikov, S. P. (Sergeĭ Petrovich) Taĭmanov, I. A. (Iskander Asanovich), 1961- |
author2_role | |
author2_variant | s p n sp spn i a t ia iat |
author_GND | http://id.loc.gov/authorities/names/n80163746 http://id.loc.gov/authorities/names/n2006040009 |
author_facet | Novikov, S. P. (Sergeĭ Petrovich) Taĭmanov, I. A. (Iskander Asanovich), 1961- |
author_sort | Novikov, S. P. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.66 .T67eb vol. 2 |
callnumber-search | QA613.66 .T67eb vol. 2 |
callnumber-sort | QA 3613.66 T67 EB VOL 12 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 10. Varying smooth structure and keeping the triangulation preserved. Morse surgeryChapter III. Corollaries and applications; 11. Smooth structures on Cartesian product of spheres; 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 7; 13. Connected sum of a manifold with Milnor's sphere; 14. Normal bundles of smooth manifolds; Appendix 1. Homotopy type and Pontrjagin classes; Appendix 2. Combinatorial equivalence and Milnor's microbundle theory; Appendix 3. On groups ; Appendix 4. Embedding of homotopy spheres into Euclidean space and the suspension stable homomorphism Introduction 1. Formulation of results; 2. The proof scheme of main theorems; 3. A geometrical lemma; 4. An analog of the Hurewicz theorem; 5. The functor P = Homc and its application to the study of homology properties of degree one maps; 6. Stably freeness of kernel modules under the assumptions of Theorem 3; 7. The homology effect of a Morse surgery; 8. Proof of Theorem 3; 9. Proof of Theorem 6; 10. One generalization of Theorem 5; Appendix 1. On the signature formula; Appendix 2. Unsolved questions concerning characteristic class theory |
ctrlnum | (OCoLC)696138885 |
dewey-full | 514/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.72 |
dewey-search | 514/.72 |
dewey-sort | 3514 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05125cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn696138885</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110111s2010 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">VT2</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">694144110</subfield><subfield code="a">712995015</subfield><subfield code="a">764546158</subfield><subfield code="a">889088239</subfield><subfield code="a">961560099</subfield><subfield code="a">962622998</subfield><subfield code="a">988409508</subfield><subfield code="a">991988639</subfield><subfield code="a">1037716311</subfield><subfield code="a">1038647508</subfield><subfield code="a">1107341495</subfield><subfield code="a">1153558370</subfield><subfield code="a">1228561945</subfield><subfield code="a">1249251181</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836878</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981283687X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812705594</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812705597</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812836861</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812836861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)696138885</subfield><subfield code="z">(OCoLC)694144110</subfield><subfield code="z">(OCoLC)712995015</subfield><subfield code="z">(OCoLC)764546158</subfield><subfield code="z">(OCoLC)889088239</subfield><subfield code="z">(OCoLC)961560099</subfield><subfield code="z">(OCoLC)962622998</subfield><subfield code="z">(OCoLC)988409508</subfield><subfield code="z">(OCoLC)991988639</subfield><subfield code="z">(OCoLC)1037716311</subfield><subfield code="z">(OCoLC)1038647508</subfield><subfield code="z">(OCoLC)1107341495</subfield><subfield code="z">(OCoLC)1153558370</subfield><subfield code="z">(OCoLC)1228561945</subfield><subfield code="z">(OCoLC)1249251181</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield><subfield code="h">mul</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613.66</subfield><subfield code="b">.T67eb vol. 2</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Topological library.</subfield><subfield code="n">Part 2,</subfield><subfield code="p">Characteristic classes and smooth structures on manifolds /</subfield><subfield code="c">editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Characteristic classes and smooth structures on manifolds</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 261 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">K & E series on knots and everything ;</subfield><subfield code="v">v. 44</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. Varying smooth structure and keeping the triangulation preserved. Morse surgeryChapter III. Corollaries and applications; 11. Smooth structures on Cartesian product of spheres; 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 7; 13. Connected sum of a manifold with Milnor's sphere; 14. Normal bundles of smooth manifolds; Appendix 1. Homotopy type and Pontrjagin classes; Appendix 2. Combinatorial equivalence and Milnor's microbundle theory; Appendix 3. On groups ; Appendix 4. Embedding of homotopy spheres into Euclidean space and the suspension stable homomorphism</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Introduction 1. Formulation of results; 2. The proof scheme of main theorems; 3. A geometrical lemma; 4. An analog of the Hurewicz theorem; 5. The functor P = Homc and its application to the study of homology properties of degree one maps; 6. Stably freeness of kernel modules under the assumptions of Theorem 3; 7. The homology effect of a Morse surgery; 8. Proof of Theorem 3; 9. Proof of Theorem 6; 10. One generalization of Theorem 5; Appendix 1. On the signature formula; Appendix 2. Unsolved questions concerning characteristic class theory</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the second of a three-volume set collecting the original and now-classic works in topology written during the 1950s-1960s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "singular homologies of fiber spaces." Sample Chapter(s) Chapter 1: On manifolds homeomorphic to the 7-sphere1 (153 KB) Contents: <ul><li>On Manifolds Homeomorphic to the 7-Sphere )</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Characteristic classes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022622</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential topology.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037923</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Classes caractéristiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Topologie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Characteristic classes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, S. P.</subfield><subfield code="q">(Sergeĭ Petrovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80163746</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taĭmanov, I. A.</subfield><subfield code="q">(Iskander Asanovich),</subfield><subfield code="d">1961-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006040009</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Part 2 Topological library Characteristic classes and smooth structures on manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFWFBgKVXhgTWCDBB79hVy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Topological library.</subfield><subfield code="d">Hackensack, N.J. : World Scientific, ©2007-<c2010></subfield><subfield code="z">9789812705594</subfield><subfield code="w">(DLC) 2007016753</subfield><subfield code="w">(OCoLC)123485622</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">K & E series on knots and everything ;</subfield><subfield code="v">v. 44.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91052105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422058</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340593</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn696138885 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:39Z |
institution | BVB |
isbn | 9789812836878 981283687X |
language | English Russian Multiple |
oclc_num | 696138885 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 261 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific, |
record_format | marc |
series | K & E series on knots and everything ; |
series2 | K & E series on knots and everything ; |
spelling | Topological library. Part 2, Characteristic classes and smooth structures on manifolds / editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov. Characteristic classes and smooth structures on manifolds Hackensack, N.J. : World Scientific, ©2010. 1 online resource (xiv, 261 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier K & E series on knots and everything ; v. 44 Includes bibliographical references and index. Print version record. 10. Varying smooth structure and keeping the triangulation preserved. Morse surgeryChapter III. Corollaries and applications; 11. Smooth structures on Cartesian product of spheres; 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 7; 13. Connected sum of a manifold with Milnor's sphere; 14. Normal bundles of smooth manifolds; Appendix 1. Homotopy type and Pontrjagin classes; Appendix 2. Combinatorial equivalence and Milnor's microbundle theory; Appendix 3. On groups ; Appendix 4. Embedding of homotopy spheres into Euclidean space and the suspension stable homomorphism Introduction 1. Formulation of results; 2. The proof scheme of main theorems; 3. A geometrical lemma; 4. An analog of the Hurewicz theorem; 5. The functor P = Homc and its application to the study of homology properties of degree one maps; 6. Stably freeness of kernel modules under the assumptions of Theorem 3; 7. The homology effect of a Morse surgery; 8. Proof of Theorem 3; 9. Proof of Theorem 6; 10. One generalization of Theorem 5; Appendix 1. On the signature formula; Appendix 2. Unsolved questions concerning characteristic class theory This is the second of a three-volume set collecting the original and now-classic works in topology written during the 1950s-1960s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "singular homologies of fiber spaces." Sample Chapter(s) Chapter 1: On manifolds homeomorphic to the 7-sphere1 (153 KB) Contents: <ul><li>On Manifolds Homeomorphic to the 7-Sphere ) Characteristic classes. http://id.loc.gov/authorities/subjects/sh85022622 Differential topology. http://id.loc.gov/authorities/subjects/sh85037923 Classes caractéristiques. Topologie différentielle. MATHEMATICS Topology. bisacsh Characteristic classes fast Differential topology fast Novikov, S. P. (Sergeĭ Petrovich) https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3 http://id.loc.gov/authorities/names/n80163746 Taĭmanov, I. A. (Iskander Asanovich), 1961- https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C http://id.loc.gov/authorities/names/n2006040009 has work: Part 2 Topological library Characteristic classes and smooth structures on manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCFWFBgKVXhgTWCDBB79hVy https://id.oclc.org/worldcat/ontology/hasWork Print version: Topological library. Hackensack, N.J. : World Scientific, ©2007-<c2010> 9789812705594 (DLC) 2007016753 (OCoLC)123485622 K & E series on knots and everything ; v. 44. http://id.loc.gov/authorities/names/n91052105 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340593 Volltext |
spellingShingle | Topological library. K & E series on knots and everything ; 10. Varying smooth structure and keeping the triangulation preserved. Morse surgeryChapter III. Corollaries and applications; 11. Smooth structures on Cartesian product of spheres; 12. Low-dimensional manifolds. Cases n = 4, 5, 6, 7; 13. Connected sum of a manifold with Milnor's sphere; 14. Normal bundles of smooth manifolds; Appendix 1. Homotopy type and Pontrjagin classes; Appendix 2. Combinatorial equivalence and Milnor's microbundle theory; Appendix 3. On groups ; Appendix 4. Embedding of homotopy spheres into Euclidean space and the suspension stable homomorphism Introduction 1. Formulation of results; 2. The proof scheme of main theorems; 3. A geometrical lemma; 4. An analog of the Hurewicz theorem; 5. The functor P = Homc and its application to the study of homology properties of degree one maps; 6. Stably freeness of kernel modules under the assumptions of Theorem 3; 7. The homology effect of a Morse surgery; 8. Proof of Theorem 3; 9. Proof of Theorem 6; 10. One generalization of Theorem 5; Appendix 1. On the signature formula; Appendix 2. Unsolved questions concerning characteristic class theory Characteristic classes. http://id.loc.gov/authorities/subjects/sh85022622 Differential topology. http://id.loc.gov/authorities/subjects/sh85037923 Classes caractéristiques. Topologie différentielle. MATHEMATICS Topology. bisacsh Characteristic classes fast Differential topology fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85022622 http://id.loc.gov/authorities/subjects/sh85037923 |
title | Topological library. |
title_alt | Characteristic classes and smooth structures on manifolds |
title_auth | Topological library. |
title_exact_search | Topological library. |
title_full | Topological library. Part 2, Characteristic classes and smooth structures on manifolds / editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov. |
title_fullStr | Topological library. Part 2, Characteristic classes and smooth structures on manifolds / editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov. |
title_full_unstemmed | Topological library. Part 2, Characteristic classes and smooth structures on manifolds / editors, S.P. Novikov, I.A. Taimanov ; translated by V.O. Manturov. |
title_short | Topological library. |
title_sort | topological library characteristic classes and smooth structures on manifolds |
topic | Characteristic classes. http://id.loc.gov/authorities/subjects/sh85022622 Differential topology. http://id.loc.gov/authorities/subjects/sh85037923 Classes caractéristiques. Topologie différentielle. MATHEMATICS Topology. bisacsh Characteristic classes fast Differential topology fast |
topic_facet | Characteristic classes. Differential topology. Classes caractéristiques. Topologie différentielle. MATHEMATICS Topology. Characteristic classes Differential topology |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340593 |
work_keys_str_mv | AT novikovsp topologicallibrarypart2 AT taimanovia topologicallibrarypart2 AT novikovsp characteristicclassesandsmoothstructuresonmanifolds AT taimanovia characteristicclassesandsmoothstructuresonmanifolds |