Classical and quantum dynamics of constrained Hamiltonian systems /:
This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in natu...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2010.
|
Schriftenreihe: | World Scientific lecture notes in physics ;
v. 81. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field. |
Beschreibung: | 1 online resource (xiv, 302 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 291-299) and index. |
ISBN: | 9789814299657 9814299650 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn679998982 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101109s2010 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d YDXCP |d OCLCQ |d STF |d EBLCP |d OCLCQ |d FVL |d OCLCQ |d UIU |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d IDEBK |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d ICG |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 729020967 |a 748608564 |a 816583915 |a 961547655 |a 962616376 |a 966210104 |a 988519833 |a 991991540 |a 1037794614 |a 1038571915 |a 1055318666 |a 1064050162 |a 1081195197 |a 1153460069 | ||
020 | |a 9789814299657 |q (electronic bk.) | ||
020 | |a 9814299650 |q (electronic bk.) | ||
020 | |z 9789814299640 | ||
020 | |z 9814299642 | ||
024 | 8 | |a ebc731199 | |
035 | |a (OCoLC)679998982 |z (OCoLC)729020967 |z (OCoLC)748608564 |z (OCoLC)816583915 |z (OCoLC)961547655 |z (OCoLC)962616376 |z (OCoLC)966210104 |z (OCoLC)988519833 |z (OCoLC)991991540 |z (OCoLC)1037794614 |z (OCoLC)1038571915 |z (OCoLC)1055318666 |z (OCoLC)1064050162 |z (OCoLC)1081195197 |z (OCoLC)1153460069 | ||
050 | 4 | |a QC174.125 |b .R68 2010eb | |
072 | 7 | |a SCI |x 057000 |2 bisacsh | |
082 | 7 | |a 530.12 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Rothe, Heinz J. |0 http://id.loc.gov/authorities/names/n93062757 | |
245 | 1 | 0 | |a Classical and quantum dynamics of constrained Hamiltonian systems / |c Heinz J Rothe & Klaus D Rothe. |
260 | |a New Jersey : |b World Scientific, |c ©2010. | ||
300 | |a 1 online resource (xiv, 302 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a World scientific lecture notes in physics ; |v v. 81 | |
504 | |a Includes bibliographical references (pages 291-299) and index. | ||
505 | 0 | |a 1. Introduction -- 2. Singular Lagrangians and local symmetries. 2.1. Introduction. 2.2. Singular Lagrangians. 2.3. Algorithm for detecting local symmetries on Lagrangian level. 2.4. Examples. 2.5. Generator of gauge transformations and Noether identities -- 3. Hamiltonian approach. The Dirac formalism. 3.1. Introduction. 3.2. Primary constraints. 3.3. The Hamilton equations of motion. 3.4. Iterative procedure for generating the constraints. 3.5. First and second class constraints. Dirac brackets -- 4. Symplectic Approach to constrained systems. 4.1. Introduction. 4.2. The case f[symbol] singular. 4.3. Interpretation of W[symbol] and F. 4.4. The Faddeev-Jackiw reduction -- 5. Local symmetries within the Dirac formalism. 5.1. Introduction. 5.2. Local symmetries and canonical transformations. 5.3. Local symmetries of the Hamilton equations of motion. 5.4. Local symmetries of the total and extended action. 5.5. Local symmetries of the Lagrangian action. 5.6. Solution of the recursive relations. 5.7. Reparametrization invariant approach -- 6. The Dirac conjecture. 6.1. Introduction. 6.2. Gauge identities and Dirac's conjecture. 6.3. General system with two primaries and one secondary constraint. 6.4. Counterexamples to Dirac's conjecture? -- 7. BFT embedding of second class systems. 7.1. Introduction. 7.2. Summary of the BFT-procedure. 7.3. The BFT construction. 7.4. Examples of BFT embedding -- 8. Hamilton-Jacobi theory of constrained systems. 8.1. Introduction. 8.2. HJ equations for first class systems. 8.3. HJ equations for second class systems -- 9. Operator quantization of second class systems. 9.1. Introduction. 9.2. Systems with only second class constraints. 9.3. Systems with first and second class constraints -- 10. Functional quantization of second class systems. 10.1. Introduction. 10.2. Partition function for second class systems -- 11. Dynamical gauges. BFV functional quantization. 11.1. Introduction. 11.2. Grassmann variables. 11.3. BFV quantization of a quantum mechanical model. 11.4. Quantization of Yang-Mills theory in the Lorentz gauge. 11.5. Axiomatic BRST approach. 11.6. Equivalence of the SD and MCS models. 11.7. The physical Hilbert space. Some remarks -- 12. Field-antifield quantization. 12.1. Introduction. 12.2. Axiomatic field-antifield formalism. 12.3. Constructive proof of the field-antifield formalism for a restricted class of theories. 12.4. The Lagrangian master equation. 12.5. The quantum master equation. 12.6. Anomalous gauge theories. The chiral Schwinger model -- A. Local symmetries and singular Lagrangians. A.1. Local symmetry transformations. A.2. Bianchi identities and singular Lagrangians -- B. The BRST charge of rank one -- C. BRST Hamiltonian of rank one -- D. The FV principal theorem -- E. BRST quantization of SU(3) Yang-Mills theory in [symbol]-gauges. | |
520 | |a This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Hamiltonian systems. |0 http://id.loc.gov/authorities/subjects/sh85058563 | |
650 | 0 | |a Constraints (Physics) |0 http://id.loc.gov/authorities/subjects/sh85031339 | |
650 | 0 | |a Gauge fields (Physics) |0 http://id.loc.gov/authorities/subjects/sh85053534 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 2 | |a Quantum Theory |0 https://id.nlm.nih.gov/mesh/D011789 | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Systèmes hamiltoniens. | |
650 | 6 | |a Contraintes (Physique) | |
650 | 6 | |a Champs de jauge (Physique) | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Quantum Theory. |2 bisacsh | |
650 | 7 | |a Constraints (Physics) |2 fast | |
650 | 7 | |a Gauge fields (Physics) |2 fast | |
650 | 7 | |a Hamiltonian systems |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
700 | 1 | |a Rothe, Klaus D. |q (Klaus Dieter) |1 https://id.oclc.org/worldcat/entity/E39PCjKPgqRvD98kmRf7g9crjd |0 http://id.loc.gov/authorities/names/n91071653 | |
758 | |i has work: |a Classical and quantum dynamics of constrained Hamiltonian systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGFJqF6PWPXPQ98YrkXb8d |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Rothe, Heinz J. |t Classical and quantum dynamics of constrained Hamiltonian systems. |d New Jersey : World Scientific, ©2010 |z 9789814299640 |w (DLC) 2009052083 |w (OCoLC)495616829 |
830 | 0 | |a World Scientific lecture notes in physics ; |v v. 81. |0 http://id.loc.gov/authorities/names/n84715132 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340777 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686554 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL731199 | ||
938 | |a ebrary |b EBRY |n ebr10422480 | ||
938 | |a EBSCOhost |b EBSC |n 340777 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 276361 | ||
938 | |a YBP Library Services |b YANK |n 3511571 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn679998982 |
---|---|
_version_ | 1816881744895279104 |
adam_text | |
any_adam_object | |
author | Rothe, Heinz J. |
author2 | Rothe, Klaus D. (Klaus Dieter) |
author2_role | |
author2_variant | k d r kd kdr |
author_GND | http://id.loc.gov/authorities/names/n93062757 http://id.loc.gov/authorities/names/n91071653 |
author_facet | Rothe, Heinz J. Rothe, Klaus D. (Klaus Dieter) |
author_role | |
author_sort | Rothe, Heinz J. |
author_variant | h j r hj hjr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.125 .R68 2010eb |
callnumber-search | QC174.125 .R68 2010eb |
callnumber-sort | QC 3174.125 R68 42010EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. Singular Lagrangians and local symmetries. 2.1. Introduction. 2.2. Singular Lagrangians. 2.3. Algorithm for detecting local symmetries on Lagrangian level. 2.4. Examples. 2.5. Generator of gauge transformations and Noether identities -- 3. Hamiltonian approach. The Dirac formalism. 3.1. Introduction. 3.2. Primary constraints. 3.3. The Hamilton equations of motion. 3.4. Iterative procedure for generating the constraints. 3.5. First and second class constraints. Dirac brackets -- 4. Symplectic Approach to constrained systems. 4.1. Introduction. 4.2. The case f[symbol] singular. 4.3. Interpretation of W[symbol] and F. 4.4. The Faddeev-Jackiw reduction -- 5. Local symmetries within the Dirac formalism. 5.1. Introduction. 5.2. Local symmetries and canonical transformations. 5.3. Local symmetries of the Hamilton equations of motion. 5.4. Local symmetries of the total and extended action. 5.5. Local symmetries of the Lagrangian action. 5.6. Solution of the recursive relations. 5.7. Reparametrization invariant approach -- 6. The Dirac conjecture. 6.1. Introduction. 6.2. Gauge identities and Dirac's conjecture. 6.3. General system with two primaries and one secondary constraint. 6.4. Counterexamples to Dirac's conjecture? -- 7. BFT embedding of second class systems. 7.1. Introduction. 7.2. Summary of the BFT-procedure. 7.3. The BFT construction. 7.4. Examples of BFT embedding -- 8. Hamilton-Jacobi theory of constrained systems. 8.1. Introduction. 8.2. HJ equations for first class systems. 8.3. HJ equations for second class systems -- 9. Operator quantization of second class systems. 9.1. Introduction. 9.2. Systems with only second class constraints. 9.3. Systems with first and second class constraints -- 10. Functional quantization of second class systems. 10.1. Introduction. 10.2. Partition function for second class systems -- 11. Dynamical gauges. BFV functional quantization. 11.1. Introduction. 11.2. Grassmann variables. 11.3. BFV quantization of a quantum mechanical model. 11.4. Quantization of Yang-Mills theory in the Lorentz gauge. 11.5. Axiomatic BRST approach. 11.6. Equivalence of the SD and MCS models. 11.7. The physical Hilbert space. Some remarks -- 12. Field-antifield quantization. 12.1. Introduction. 12.2. Axiomatic field-antifield formalism. 12.3. Constructive proof of the field-antifield formalism for a restricted class of theories. 12.4. The Lagrangian master equation. 12.5. The quantum master equation. 12.6. Anomalous gauge theories. The chiral Schwinger model -- A. Local symmetries and singular Lagrangians. A.1. Local symmetry transformations. A.2. Bianchi identities and singular Lagrangians -- B. The BRST charge of rank one -- C. BRST Hamiltonian of rank one -- D. The FV principal theorem -- E. BRST quantization of SU(3) Yang-Mills theory in [symbol]-gauges. |
ctrlnum | (OCoLC)679998982 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07788cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn679998982</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101109s2010 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">729020967</subfield><subfield code="a">748608564</subfield><subfield code="a">816583915</subfield><subfield code="a">961547655</subfield><subfield code="a">962616376</subfield><subfield code="a">966210104</subfield><subfield code="a">988519833</subfield><subfield code="a">991991540</subfield><subfield code="a">1037794614</subfield><subfield code="a">1038571915</subfield><subfield code="a">1055318666</subfield><subfield code="a">1064050162</subfield><subfield code="a">1081195197</subfield><subfield code="a">1153460069</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814299657</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814299650</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814299640</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814299642</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">ebc731199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)679998982</subfield><subfield code="z">(OCoLC)729020967</subfield><subfield code="z">(OCoLC)748608564</subfield><subfield code="z">(OCoLC)816583915</subfield><subfield code="z">(OCoLC)961547655</subfield><subfield code="z">(OCoLC)962616376</subfield><subfield code="z">(OCoLC)966210104</subfield><subfield code="z">(OCoLC)988519833</subfield><subfield code="z">(OCoLC)991991540</subfield><subfield code="z">(OCoLC)1037794614</subfield><subfield code="z">(OCoLC)1038571915</subfield><subfield code="z">(OCoLC)1055318666</subfield><subfield code="z">(OCoLC)1064050162</subfield><subfield code="z">(OCoLC)1081195197</subfield><subfield code="z">(OCoLC)1153460069</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.125</subfield><subfield code="b">.R68 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">057000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rothe, Heinz J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93062757</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical and quantum dynamics of constrained Hamiltonian systems /</subfield><subfield code="c">Heinz J Rothe & Klaus D Rothe.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 302 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">World scientific lecture notes in physics ;</subfield><subfield code="v">v. 81</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 291-299) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. Singular Lagrangians and local symmetries. 2.1. Introduction. 2.2. Singular Lagrangians. 2.3. Algorithm for detecting local symmetries on Lagrangian level. 2.4. Examples. 2.5. Generator of gauge transformations and Noether identities -- 3. Hamiltonian approach. The Dirac formalism. 3.1. Introduction. 3.2. Primary constraints. 3.3. The Hamilton equations of motion. 3.4. Iterative procedure for generating the constraints. 3.5. First and second class constraints. Dirac brackets -- 4. Symplectic Approach to constrained systems. 4.1. Introduction. 4.2. The case f[symbol] singular. 4.3. Interpretation of W[symbol] and F. 4.4. The Faddeev-Jackiw reduction -- 5. Local symmetries within the Dirac formalism. 5.1. Introduction. 5.2. Local symmetries and canonical transformations. 5.3. Local symmetries of the Hamilton equations of motion. 5.4. Local symmetries of the total and extended action. 5.5. Local symmetries of the Lagrangian action. 5.6. Solution of the recursive relations. 5.7. Reparametrization invariant approach -- 6. The Dirac conjecture. 6.1. Introduction. 6.2. Gauge identities and Dirac's conjecture. 6.3. General system with two primaries and one secondary constraint. 6.4. Counterexamples to Dirac's conjecture? -- 7. BFT embedding of second class systems. 7.1. Introduction. 7.2. Summary of the BFT-procedure. 7.3. The BFT construction. 7.4. Examples of BFT embedding -- 8. Hamilton-Jacobi theory of constrained systems. 8.1. Introduction. 8.2. HJ equations for first class systems. 8.3. HJ equations for second class systems -- 9. Operator quantization of second class systems. 9.1. Introduction. 9.2. Systems with only second class constraints. 9.3. Systems with first and second class constraints -- 10. Functional quantization of second class systems. 10.1. Introduction. 10.2. Partition function for second class systems -- 11. Dynamical gauges. BFV functional quantization. 11.1. Introduction. 11.2. Grassmann variables. 11.3. BFV quantization of a quantum mechanical model. 11.4. Quantization of Yang-Mills theory in the Lorentz gauge. 11.5. Axiomatic BRST approach. 11.6. Equivalence of the SD and MCS models. 11.7. The physical Hilbert space. Some remarks -- 12. Field-antifield quantization. 12.1. Introduction. 12.2. Axiomatic field-antifield formalism. 12.3. Constructive proof of the field-antifield formalism for a restricted class of theories. 12.4. The Lagrangian master equation. 12.5. The quantum master equation. 12.6. Anomalous gauge theories. The chiral Schwinger model -- A. Local symmetries and singular Lagrangians. A.1. Local symmetry transformations. A.2. Bianchi identities and singular Lagrangians -- B. The BRST charge of rank one -- C. BRST Hamiltonian of rank one -- D. The FV principal theorem -- E. BRST quantization of SU(3) Yang-Mills theory in [symbol]-gauges.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hamiltonian systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058563</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Constraints (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031339</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gauge fields (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053534</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Quantum Theory</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D011789</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes hamiltoniens.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Contraintes (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Champs de jauge (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Quantum Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constraints (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gauge fields (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hamiltonian systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rothe, Klaus D.</subfield><subfield code="q">(Klaus Dieter)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKPgqRvD98kmRf7g9crjd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91071653</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Classical and quantum dynamics of constrained Hamiltonian systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGFJqF6PWPXPQ98YrkXb8d</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Rothe, Heinz J.</subfield><subfield code="t">Classical and quantum dynamics of constrained Hamiltonian systems.</subfield><subfield code="d">New Jersey : World Scientific, ©2010</subfield><subfield code="z">9789814299640</subfield><subfield code="w">(DLC) 2009052083</subfield><subfield code="w">(OCoLC)495616829</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">World Scientific lecture notes in physics ;</subfield><subfield code="v">v. 81.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84715132</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340777</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24686554</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL731199</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422480</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340777</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">276361</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511571</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn679998982 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:35Z |
institution | BVB |
isbn | 9789814299657 9814299650 |
language | English |
oclc_num | 679998982 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 302 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific, |
record_format | marc |
series | World Scientific lecture notes in physics ; |
series2 | World scientific lecture notes in physics ; |
spelling | Rothe, Heinz J. http://id.loc.gov/authorities/names/n93062757 Classical and quantum dynamics of constrained Hamiltonian systems / Heinz J Rothe & Klaus D Rothe. New Jersey : World Scientific, ©2010. 1 online resource (xiv, 302 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file World scientific lecture notes in physics ; v. 81 Includes bibliographical references (pages 291-299) and index. 1. Introduction -- 2. Singular Lagrangians and local symmetries. 2.1. Introduction. 2.2. Singular Lagrangians. 2.3. Algorithm for detecting local symmetries on Lagrangian level. 2.4. Examples. 2.5. Generator of gauge transformations and Noether identities -- 3. Hamiltonian approach. The Dirac formalism. 3.1. Introduction. 3.2. Primary constraints. 3.3. The Hamilton equations of motion. 3.4. Iterative procedure for generating the constraints. 3.5. First and second class constraints. Dirac brackets -- 4. Symplectic Approach to constrained systems. 4.1. Introduction. 4.2. The case f[symbol] singular. 4.3. Interpretation of W[symbol] and F. 4.4. The Faddeev-Jackiw reduction -- 5. Local symmetries within the Dirac formalism. 5.1. Introduction. 5.2. Local symmetries and canonical transformations. 5.3. Local symmetries of the Hamilton equations of motion. 5.4. Local symmetries of the total and extended action. 5.5. Local symmetries of the Lagrangian action. 5.6. Solution of the recursive relations. 5.7. Reparametrization invariant approach -- 6. The Dirac conjecture. 6.1. Introduction. 6.2. Gauge identities and Dirac's conjecture. 6.3. General system with two primaries and one secondary constraint. 6.4. Counterexamples to Dirac's conjecture? -- 7. BFT embedding of second class systems. 7.1. Introduction. 7.2. Summary of the BFT-procedure. 7.3. The BFT construction. 7.4. Examples of BFT embedding -- 8. Hamilton-Jacobi theory of constrained systems. 8.1. Introduction. 8.2. HJ equations for first class systems. 8.3. HJ equations for second class systems -- 9. Operator quantization of second class systems. 9.1. Introduction. 9.2. Systems with only second class constraints. 9.3. Systems with first and second class constraints -- 10. Functional quantization of second class systems. 10.1. Introduction. 10.2. Partition function for second class systems -- 11. Dynamical gauges. BFV functional quantization. 11.1. Introduction. 11.2. Grassmann variables. 11.3. BFV quantization of a quantum mechanical model. 11.4. Quantization of Yang-Mills theory in the Lorentz gauge. 11.5. Axiomatic BRST approach. 11.6. Equivalence of the SD and MCS models. 11.7. The physical Hilbert space. Some remarks -- 12. Field-antifield quantization. 12.1. Introduction. 12.2. Axiomatic field-antifield formalism. 12.3. Constructive proof of the field-antifield formalism for a restricted class of theories. 12.4. The Lagrangian master equation. 12.5. The quantum master equation. 12.6. Anomalous gauge theories. The chiral Schwinger model -- A. Local symmetries and singular Lagrangians. A.1. Local symmetry transformations. A.2. Bianchi identities and singular Lagrangians -- B. The BRST charge of rank one -- C. BRST Hamiltonian of rank one -- D. The FV principal theorem -- E. BRST quantization of SU(3) Yang-Mills theory in [symbol]-gauges. This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. All topics are well illustrated with examples emphasizing points of central interest. The book should enable graduate students to follow the literature on this subject without much problems, and to perform research in this field. Print version record. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Constraints (Physics) http://id.loc.gov/authorities/subjects/sh85031339 Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Systèmes hamiltoniens. Contraintes (Physique) Champs de jauge (Physique) Physique mathématique. SCIENCE Physics Quantum Theory. bisacsh Constraints (Physics) fast Gauge fields (Physics) fast Hamiltonian systems fast Mathematical physics fast Quantum theory fast Rothe, Klaus D. (Klaus Dieter) https://id.oclc.org/worldcat/entity/E39PCjKPgqRvD98kmRf7g9crjd http://id.loc.gov/authorities/names/n91071653 has work: Classical and quantum dynamics of constrained Hamiltonian systems (Text) https://id.oclc.org/worldcat/entity/E39PCGFJqF6PWPXPQ98YrkXb8d https://id.oclc.org/worldcat/ontology/hasWork Print version: Rothe, Heinz J. Classical and quantum dynamics of constrained Hamiltonian systems. New Jersey : World Scientific, ©2010 9789814299640 (DLC) 2009052083 (OCoLC)495616829 World Scientific lecture notes in physics ; v. 81. http://id.loc.gov/authorities/names/n84715132 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340777 Volltext |
spellingShingle | Rothe, Heinz J. Classical and quantum dynamics of constrained Hamiltonian systems / World Scientific lecture notes in physics ; 1. Introduction -- 2. Singular Lagrangians and local symmetries. 2.1. Introduction. 2.2. Singular Lagrangians. 2.3. Algorithm for detecting local symmetries on Lagrangian level. 2.4. Examples. 2.5. Generator of gauge transformations and Noether identities -- 3. Hamiltonian approach. The Dirac formalism. 3.1. Introduction. 3.2. Primary constraints. 3.3. The Hamilton equations of motion. 3.4. Iterative procedure for generating the constraints. 3.5. First and second class constraints. Dirac brackets -- 4. Symplectic Approach to constrained systems. 4.1. Introduction. 4.2. The case f[symbol] singular. 4.3. Interpretation of W[symbol] and F. 4.4. The Faddeev-Jackiw reduction -- 5. Local symmetries within the Dirac formalism. 5.1. Introduction. 5.2. Local symmetries and canonical transformations. 5.3. Local symmetries of the Hamilton equations of motion. 5.4. Local symmetries of the total and extended action. 5.5. Local symmetries of the Lagrangian action. 5.6. Solution of the recursive relations. 5.7. Reparametrization invariant approach -- 6. The Dirac conjecture. 6.1. Introduction. 6.2. Gauge identities and Dirac's conjecture. 6.3. General system with two primaries and one secondary constraint. 6.4. Counterexamples to Dirac's conjecture? -- 7. BFT embedding of second class systems. 7.1. Introduction. 7.2. Summary of the BFT-procedure. 7.3. The BFT construction. 7.4. Examples of BFT embedding -- 8. Hamilton-Jacobi theory of constrained systems. 8.1. Introduction. 8.2. HJ equations for first class systems. 8.3. HJ equations for second class systems -- 9. Operator quantization of second class systems. 9.1. Introduction. 9.2. Systems with only second class constraints. 9.3. Systems with first and second class constraints -- 10. Functional quantization of second class systems. 10.1. Introduction. 10.2. Partition function for second class systems -- 11. Dynamical gauges. BFV functional quantization. 11.1. Introduction. 11.2. Grassmann variables. 11.3. BFV quantization of a quantum mechanical model. 11.4. Quantization of Yang-Mills theory in the Lorentz gauge. 11.5. Axiomatic BRST approach. 11.6. Equivalence of the SD and MCS models. 11.7. The physical Hilbert space. Some remarks -- 12. Field-antifield quantization. 12.1. Introduction. 12.2. Axiomatic field-antifield formalism. 12.3. Constructive proof of the field-antifield formalism for a restricted class of theories. 12.4. The Lagrangian master equation. 12.5. The quantum master equation. 12.6. Anomalous gauge theories. The chiral Schwinger model -- A. Local symmetries and singular Lagrangians. A.1. Local symmetry transformations. A.2. Bianchi identities and singular Lagrangians -- B. The BRST charge of rank one -- C. BRST Hamiltonian of rank one -- D. The FV principal theorem -- E. BRST quantization of SU(3) Yang-Mills theory in [symbol]-gauges. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Constraints (Physics) http://id.loc.gov/authorities/subjects/sh85031339 Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Systèmes hamiltoniens. Contraintes (Physique) Champs de jauge (Physique) Physique mathématique. SCIENCE Physics Quantum Theory. bisacsh Constraints (Physics) fast Gauge fields (Physics) fast Hamiltonian systems fast Mathematical physics fast Quantum theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85109469 http://id.loc.gov/authorities/subjects/sh85058563 http://id.loc.gov/authorities/subjects/sh85031339 http://id.loc.gov/authorities/subjects/sh85053534 http://id.loc.gov/authorities/subjects/sh85082129 https://id.nlm.nih.gov/mesh/D011789 |
title | Classical and quantum dynamics of constrained Hamiltonian systems / |
title_auth | Classical and quantum dynamics of constrained Hamiltonian systems / |
title_exact_search | Classical and quantum dynamics of constrained Hamiltonian systems / |
title_full | Classical and quantum dynamics of constrained Hamiltonian systems / Heinz J Rothe & Klaus D Rothe. |
title_fullStr | Classical and quantum dynamics of constrained Hamiltonian systems / Heinz J Rothe & Klaus D Rothe. |
title_full_unstemmed | Classical and quantum dynamics of constrained Hamiltonian systems / Heinz J Rothe & Klaus D Rothe. |
title_short | Classical and quantum dynamics of constrained Hamiltonian systems / |
title_sort | classical and quantum dynamics of constrained hamiltonian systems |
topic | Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Hamiltonian systems. http://id.loc.gov/authorities/subjects/sh85058563 Constraints (Physics) http://id.loc.gov/authorities/subjects/sh85031339 Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Systèmes hamiltoniens. Contraintes (Physique) Champs de jauge (Physique) Physique mathématique. SCIENCE Physics Quantum Theory. bisacsh Constraints (Physics) fast Gauge fields (Physics) fast Hamiltonian systems fast Mathematical physics fast Quantum theory fast |
topic_facet | Quantum theory. Hamiltonian systems. Constraints (Physics) Gauge fields (Physics) Mathematical physics. Quantum Theory Théorie quantique. Systèmes hamiltoniens. Contraintes (Physique) Champs de jauge (Physique) Physique mathématique. SCIENCE Physics Quantum Theory. Hamiltonian systems Mathematical physics Quantum theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340777 |
work_keys_str_mv | AT rotheheinzj classicalandquantumdynamicsofconstrainedhamiltoniansystems AT rotheklausd classicalandquantumdynamicsofconstrainedhamiltoniansystems |