Szegő's theorem and its descendants :: spectral theory for L2 perturbations of orthogonal polynomials /
This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2011.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia. |
Beschreibung: | 1 online resource (x, 650 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781400837052 1400837057 1282821156 9781282821156 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn677162060 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101103s2011 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d EBLCP |d E7B |d CDX |d OCLCQ |d MHW |d UMI |d REDDC |d OCLCQ |d MERUC |d COO |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d OCLCQ |d SNK |d IDEBK |d DEBBG |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d OCLCQ |d IOG |d NJR |d EZ9 |d OCLCQ |d VTS |d CEF |d ICG |d OCLCQ |d INT |d OCLCQ |d LVT |d VT2 |d WYU |d YOU |d TKN |d OCLCQ |d UAB |d STF |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d AJS |d UWK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL | ||
019 | |a 691080909 |a 729029328 |a 773205599 |a 784841393 |a 816598747 |a 961547000 |a 988497368 |a 992116802 |a 994901006 |a 1055360894 |a 1103275907 | ||
020 | |a 9781400837052 |q (electronic bk.) | ||
020 | |a 1400837057 |q (electronic bk.) | ||
020 | |a 1282821156 | ||
020 | |a 9781282821156 | ||
020 | |z 0691147043 | ||
020 | |z 9780691147048 | ||
035 | |a (OCoLC)677162060 |z (OCoLC)691080909 |z (OCoLC)729029328 |z (OCoLC)773205599 |z (OCoLC)784841393 |z (OCoLC)816598747 |z (OCoLC)961547000 |z (OCoLC)988497368 |z (OCoLC)992116802 |z (OCoLC)994901006 |z (OCoLC)1055360894 |z (OCoLC)1103275907 | ||
037 | |a CL0500000122 |b Safari Books Online | ||
037 | |a 22573/cttvp04 |b JSTOR | ||
050 | 4 | |a QC20.7.S64 |b S56 2011eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a SCI040000 |2 bisacsh | |
072 | 7 | |a MAT034000 |2 bisacsh | |
072 | 7 | |a PB |2 bicssc | |
082 | 7 | |a 515/.55 |2 22 | |
084 | |a SK 680 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Simon, Barry, |d 1946- |1 https://id.oclc.org/worldcat/entity/E39PBJbMcCjJtptX9HCWtTTmBP |0 http://id.loc.gov/authorities/names/n79082366 | |
245 | 1 | 0 | |a Szegő's theorem and its descendants : |b spectral theory for L2 perturbations of orthogonal polynomials / |c Barry Simon. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2011. | ||
300 | |a 1 online resource (x, 650 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and indexes. | ||
520 | |a This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index. | |
650 | 0 | |a Spectral theory (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85126408 | |
650 | 0 | |a Orthogonal polynomials. |0 http://id.loc.gov/authorities/subjects/sh85095794 | |
650 | 6 | |a Spectre (Mathématiques) | |
650 | 6 | |a Polynômes orthogonaux. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Orthogonal polynomials |2 fast | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast | |
758 | |i has work: |a Szegő's theorem and its descendants (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH399xvM37YtyQ7rcWxybb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Simon, Barry, 1946- |t Szegö's theorem and its descendants. |d Princeton, N.J. : Princeton University Press, ©2011 |z 9780691147048 |w (DLC) 2010023223 |w (OCoLC)587249070 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340202 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26387819 | ||
938 | |a Coutts Information Services |b COUT |n 15746600 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL590814 | ||
938 | |a ebrary |b EBRY |n ebr10421701 | ||
938 | |a EBSCOhost |b EBSC |n 340202 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 282115 | ||
938 | |a YBP Library Services |b YANK |n 3500820 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn677162060 |
---|---|
_version_ | 1816881744683466753 |
adam_text | |
any_adam_object | |
author | Simon, Barry, 1946- |
author_GND | http://id.loc.gov/authorities/names/n79082366 |
author_facet | Simon, Barry, 1946- |
author_role | |
author_sort | Simon, Barry, 1946- |
author_variant | b s bs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.S64 S56 2011eb |
callnumber-search | QC20.7.S64 S56 2011eb |
callnumber-sort | QC 220.7 S64 S56 42011EB |
callnumber-subject | QC - Physics |
classification_rvk | SK 680 |
collection | ZDB-4-EBA |
contents | Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index. |
ctrlnum | (OCoLC)677162060 |
dewey-full | 515/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.55 |
dewey-search | 515/.55 |
dewey-sort | 3515 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04784cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn677162060</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101103s2011 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">UMI</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SNK</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">NJR</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">VT2</subfield><subfield code="d">WYU</subfield><subfield code="d">YOU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">691080909</subfield><subfield code="a">729029328</subfield><subfield code="a">773205599</subfield><subfield code="a">784841393</subfield><subfield code="a">816598747</subfield><subfield code="a">961547000</subfield><subfield code="a">988497368</subfield><subfield code="a">992116802</subfield><subfield code="a">994901006</subfield><subfield code="a">1055360894</subfield><subfield code="a">1103275907</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837052</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400837057</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282821156</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282821156</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691147043</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691147048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)677162060</subfield><subfield code="z">(OCoLC)691080909</subfield><subfield code="z">(OCoLC)729029328</subfield><subfield code="z">(OCoLC)773205599</subfield><subfield code="z">(OCoLC)784841393</subfield><subfield code="z">(OCoLC)816598747</subfield><subfield code="z">(OCoLC)961547000</subfield><subfield code="z">(OCoLC)988497368</subfield><subfield code="z">(OCoLC)992116802</subfield><subfield code="z">(OCoLC)994901006</subfield><subfield code="z">(OCoLC)1055360894</subfield><subfield code="z">(OCoLC)1103275907</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000122</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttvp04</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.S64</subfield><subfield code="b">S56 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PB</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 680</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simon, Barry,</subfield><subfield code="d">1946-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbMcCjJtptX9HCWtTTmBP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79082366</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Szegő's theorem and its descendants :</subfield><subfield code="b">spectral theory for L2 perturbations of orthogonal polynomials /</subfield><subfield code="c">Barry Simon.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 650 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85126408</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Orthogonal polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85095794</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes orthogonaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Orthogonal polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral theory (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Szegő's theorem and its descendants (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH399xvM37YtyQ7rcWxybb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Simon, Barry, 1946-</subfield><subfield code="t">Szegö's theorem and its descendants.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2011</subfield><subfield code="z">9780691147048</subfield><subfield code="w">(DLC) 2010023223</subfield><subfield code="w">(OCoLC)587249070</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340202</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387819</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">15746600</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL590814</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10421701</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340202</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">282115</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3500820</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn677162060 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:35Z |
institution | BVB |
isbn | 9781400837052 1400837057 1282821156 9781282821156 |
language | English |
oclc_num | 677162060 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 650 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Simon, Barry, 1946- https://id.oclc.org/worldcat/entity/E39PBJbMcCjJtptX9HCWtTTmBP http://id.loc.gov/authorities/names/n79082366 Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / Barry Simon. Princeton, N.J. : Princeton University Press, ©2011. 1 online resource (x, 650 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and indexes. This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomia. Print version record. Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index. Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Spectre (Mathématiques) Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh SCIENCE Physics Mathematical & Computational. bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast has work: Szegő's theorem and its descendants (Text) https://id.oclc.org/worldcat/entity/E39PCH399xvM37YtyQ7rcWxybb https://id.oclc.org/worldcat/ontology/hasWork Print version: Simon, Barry, 1946- Szegö's theorem and its descendants. Princeton, N.J. : Princeton University Press, ©2011 9780691147048 (DLC) 2010023223 (OCoLC)587249070 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340202 Volltext |
spellingShingle | Simon, Barry, 1946- Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / Cover; Contents; Preface; Chapter 1. Gems of Spectral Theory; Chapter 2. Szego's Theorem; Chapter 3. The Killip-Simon Theorem: Szego for OPRL; Chapter 4. Sum Rules and Consequences for Matrix Orthogonal Polynomials; Chapter 5. Periodic OPRL; Chapter 6. Toda Flows and Symplectic Structures; Chapter 7. Right Limits; Chapter 8. Szego and Killip-Simon Theorems for Periodic OPRL; Chapter 9. Szego's Theorem for Finite Gap OPRL; Chapter 10. A.C. Spectrum for Bethe-Cayley Trees; Bibliography; Author Index; Subject Index. Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Spectre (Mathématiques) Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh SCIENCE Physics Mathematical & Computational. bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85126408 http://id.loc.gov/authorities/subjects/sh85095794 |
title | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / |
title_auth | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / |
title_exact_search | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / |
title_full | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / Barry Simon. |
title_fullStr | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / Barry Simon. |
title_full_unstemmed | Szegő's theorem and its descendants : spectral theory for L2 perturbations of orthogonal polynomials / Barry Simon. |
title_short | Szegő's theorem and its descendants : |
title_sort | szego s theorem and its descendants spectral theory for l2 perturbations of orthogonal polynomials |
title_sub | spectral theory for L2 perturbations of orthogonal polynomials / |
topic | Spectral theory (Mathematics) http://id.loc.gov/authorities/subjects/sh85126408 Orthogonal polynomials. http://id.loc.gov/authorities/subjects/sh85095794 Spectre (Mathématiques) Polynômes orthogonaux. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh SCIENCE Physics Mathematical & Computational. bisacsh Orthogonal polynomials fast Spectral theory (Mathematics) fast |
topic_facet | Spectral theory (Mathematics) Orthogonal polynomials. Spectre (Mathématiques) Polynômes orthogonaux. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. SCIENCE Physics Mathematical & Computational. Orthogonal polynomials |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340202 |
work_keys_str_mv | AT simonbarry szegostheoremanditsdescendantsspectraltheoryforl2perturbationsoforthogonalpolynomials |