Introduction to mathematical elasticity /:
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dim...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
©2009.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability. Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems. |
Beschreibung: | 1 online resource (xv, 300 pages) : illustrations |
Bibliographie: | Includes bibliographical references (page 293) and index. |
ISBN: | 9789814273732 9814273732 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn671655175 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101025s2009 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d FVL |d OCLCQ |d UIU |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d NLGGC |d IDEBK |d EBLCP |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d LOA |d JBG |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d AU@ |d OCLCQ |d DKC |d OCLCQ |d UHL |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 712995067 |a 719420445 |a 729020097 |a 743436977 |a 748608530 |a 816581950 |a 961531672 |a 962574997 |a 968307779 |a 988449403 |a 992108054 |a 1037761708 |a 1038671957 |a 1113507178 |a 1153502177 | ||
020 | |a 9789814273732 |q (electronic bk.) | ||
020 | |a 9814273732 |q (electronic bk.) | ||
020 | |z 9789814273725 | ||
020 | |z 9814273724 | ||
035 | |a (OCoLC)671655175 |z (OCoLC)712995067 |z (OCoLC)719420445 |z (OCoLC)729020097 |z (OCoLC)743436977 |z (OCoLC)748608530 |z (OCoLC)816581950 |z (OCoLC)961531672 |z (OCoLC)962574997 |z (OCoLC)968307779 |z (OCoLC)988449403 |z (OCoLC)992108054 |z (OCoLC)1037761708 |z (OCoLC)1038671957 |z (OCoLC)1113507178 |z (OCoLC)1153502177 | ||
050 | 4 | |a QA931 |b .L38 2009eb | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
082 | 7 | |a 510 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lebedev, L. P. | |
245 | 1 | 0 | |a Introduction to mathematical elasticity / |c Leonid P. Lebedev, Michael J. Cloud. |
260 | |a Hackensack, NJ : |b World Scientific, |c ©2009. | ||
300 | |a 1 online resource (xv, 300 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (page 293) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding. | |
505 | 8 | |a 2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity. | |
520 | |a This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability. Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems. | ||
650 | 0 | |a Elasticity. |0 http://id.loc.gov/authorities/subjects/sh85041516 | |
650 | 2 | |a Elasticity |0 https://id.nlm.nih.gov/mesh/D004548 | |
650 | 6 | |a Élasticité. | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a Elasticity |2 fast | |
700 | 1 | |a Cloud, Michael J. | |
776 | 0 | 8 | |i Print version: |a Lebedev, L.P. |t Introduction to mathematical elasticity. |d Hackensack, NJ : World Scientific, ©2009 |z 9789814273725 |w (OCoLC)299716437 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340558 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL1681613 | ||
938 | |a ebrary |b EBRY |n ebr10422301 | ||
938 | |a EBSCOhost |b EBSC |n 340558 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 275812 | ||
938 | |a YBP Library Services |b YANK |n 3511424 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn671655175 |
---|---|
_version_ | 1816881743681028096 |
adam_text | |
any_adam_object | |
author | Lebedev, L. P. |
author2 | Cloud, Michael J. |
author2_role | |
author2_variant | m j c mj mjc |
author_facet | Lebedev, L. P. Cloud, Michael J. |
author_role | |
author_sort | Lebedev, L. P. |
author_variant | l p l lp lpl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA931 |
callnumber-raw | QA931 .L38 2009eb |
callnumber-search | QA931 .L38 2009eb |
callnumber-sort | QA 3931 L38 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding. 2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity. |
ctrlnum | (OCoLC)671655175 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06920cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn671655175</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101025s2009 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">NLGGC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">712995067</subfield><subfield code="a">719420445</subfield><subfield code="a">729020097</subfield><subfield code="a">743436977</subfield><subfield code="a">748608530</subfield><subfield code="a">816581950</subfield><subfield code="a">961531672</subfield><subfield code="a">962574997</subfield><subfield code="a">968307779</subfield><subfield code="a">988449403</subfield><subfield code="a">992108054</subfield><subfield code="a">1037761708</subfield><subfield code="a">1038671957</subfield><subfield code="a">1113507178</subfield><subfield code="a">1153502177</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814273732</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814273732</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814273725</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814273724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)671655175</subfield><subfield code="z">(OCoLC)712995067</subfield><subfield code="z">(OCoLC)719420445</subfield><subfield code="z">(OCoLC)729020097</subfield><subfield code="z">(OCoLC)743436977</subfield><subfield code="z">(OCoLC)748608530</subfield><subfield code="z">(OCoLC)816581950</subfield><subfield code="z">(OCoLC)961531672</subfield><subfield code="z">(OCoLC)962574997</subfield><subfield code="z">(OCoLC)968307779</subfield><subfield code="z">(OCoLC)988449403</subfield><subfield code="z">(OCoLC)992108054</subfield><subfield code="z">(OCoLC)1037761708</subfield><subfield code="z">(OCoLC)1038671957</subfield><subfield code="z">(OCoLC)1113507178</subfield><subfield code="z">(OCoLC)1153502177</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA931</subfield><subfield code="b">.L38 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lebedev, L. P.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to mathematical elasticity /</subfield><subfield code="c">Leonid P. Lebedev, Michael J. Cloud.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 300 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 293) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability. Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Elasticity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85041516</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Elasticity</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D004548</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Élasticité.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elasticity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cloud, Michael J.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lebedev, L.P.</subfield><subfield code="t">Introduction to mathematical elasticity.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2009</subfield><subfield code="z">9789814273725</subfield><subfield code="w">(OCoLC)299716437</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681613</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422301</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340558</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">275812</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511424</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn671655175 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:34Z |
institution | BVB |
isbn | 9789814273732 9814273732 |
language | English |
oclc_num | 671655175 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 300 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific, |
record_format | marc |
spelling | Lebedev, L. P. Introduction to mathematical elasticity / Leonid P. Lebedev, Michael J. Cloud. Hackensack, NJ : World Scientific, ©2009. 1 online resource (xv, 300 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (page 293) and index. Print version record. 1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding. 2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity. This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability. Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems. Elasticity. http://id.loc.gov/authorities/subjects/sh85041516 Elasticity https://id.nlm.nih.gov/mesh/D004548 Élasticité. MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Essays. bisacsh Elasticity fast Cloud, Michael J. Print version: Lebedev, L.P. Introduction to mathematical elasticity. Hackensack, NJ : World Scientific, ©2009 9789814273725 (OCoLC)299716437 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340558 Volltext |
spellingShingle | Lebedev, L. P. Introduction to mathematical elasticity / 1. Models and ideas of classical mechanics. 1.1. Orientation. 1.2. Some words on the fundamentals of our subject. 1.3. Metric spaces and spaces of particles. 1.4. Vectors and vector spaces. 1.5. Normed spaces and inner product spaces. 1.6. Forces. 1.7. Equilibrium and motion of a rigid body. 1.8. D'Alembert's principle. 1.9. The motion of a system of particles. 1.10. The rigid body. 1.11. Motion of a system of particles ; comparison of trajectories ; notion of operator. 1.12. Matrix operators and matrix equations. 1.13. Complete spaces. 1.14. Completion theorem. 1.15. Lebesgue integration and the L[symbol] spaces. 1.16. Orthogonal decomposition of Hilbert Space. 1.17. Work and energy. 1.18. Virtual work principle. 1.19. Lagrange's equations of the second kind. 1.20. Problem of minimum of a functional. 1.21. Hamilton's principle. 1.22. Energy conservation revisited -- 2. Simple elastic models. 2.1. Introduction. 2.2. Two main principles of equilibrium and motion for bodies in continuum mechanics. 2.3. Equilibrium of a spring. 2.4. Equilibrium of a string. 2.5. Equilibrium boundary value problems for a string. 2.6. Generalized formulation of the equilibrium problem for a string. 2.7. Virtual work principle for a string. 2.8. Riesz representation theorem. 2.9. Generalized setup of the dirichlet problem for a string. 2.10. First theorems of imbedding. 2.11. Generalized setup of the dirichlet problem for a string, continued. 2.12. Neumann problem for the string. 2.13. The generalized solution of linear mechanical problems and the principle of minimum total energy. 2.14. Nonlinear model of a membrane. 2.15. Linear membrane theory : Poisson's equation. 2.16. Generalized setup of the dirichlet problem for a linear membrane. 2.17. Other membrane equilibrium problems. 2.18. Banach's contraction mapping principle -- 3. Theory of elasticity : statics and dynamics. 3.1. Introduction. 3.2. An elastic bar under stretching. 3.3. Bending of a beam. 3.4. Generalized solutions to the equilibrium problem for a beam. 3.5. Generalized setup : rough qualitative discussion. 3.6. Pressure and stresses. 3.7. Vectors and tensors. 3.8. The Cauchy stress tensor, continued. 3.9. Basic tensor calculus in curvilinear coordinates. 3.10. Euler and Lagrange descriptions of continua. 3.11. Strain tensors. 3.12. The virtual work principle. 3.13. Hooke's law in three dimensions. 3.14. The equilibrium equations of linear elasticity in displacements. 3.15. Virtual work principle in linear elasticity. 3.16. Generalized setup of elasticity problems. 3.17. Existence theorem for an elastic body. 3.18. Equilibrium of a free elastic body. 3.19. Variational methods for equilibrium problems. 3.20. A brief but important remark. 3.21. Countable sets and separable spaces. 3.22. Fourier series. 3.23. Problem of vibration for elastic structures. 3.24. Self-adjointness of A and its consequences. 3.25. Compactness of A. 3.26. Riesz-Fredholm theory for a linear, self-adjoint, compact operator in a Hilbert Space. 3.27. Weak convergence in Hilbert Space. 3.28. Completeness of the system of eigenvectors of a self-adjoint, compact, strictly positive linear operator. 3.29. Other standard models of elasticity. Elasticity. http://id.loc.gov/authorities/subjects/sh85041516 Elasticity https://id.nlm.nih.gov/mesh/D004548 Élasticité. MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Essays. bisacsh Elasticity fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85041516 https://id.nlm.nih.gov/mesh/D004548 |
title | Introduction to mathematical elasticity / |
title_auth | Introduction to mathematical elasticity / |
title_exact_search | Introduction to mathematical elasticity / |
title_full | Introduction to mathematical elasticity / Leonid P. Lebedev, Michael J. Cloud. |
title_fullStr | Introduction to mathematical elasticity / Leonid P. Lebedev, Michael J. Cloud. |
title_full_unstemmed | Introduction to mathematical elasticity / Leonid P. Lebedev, Michael J. Cloud. |
title_short | Introduction to mathematical elasticity / |
title_sort | introduction to mathematical elasticity |
topic | Elasticity. http://id.loc.gov/authorities/subjects/sh85041516 Elasticity https://id.nlm.nih.gov/mesh/D004548 Élasticité. MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh MATHEMATICS Essays. bisacsh Elasticity fast |
topic_facet | Elasticity. Elasticity Élasticité. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. MATHEMATICS Essays. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340558 |
work_keys_str_mv | AT lebedevlp introductiontomathematicalelasticity AT cloudmichaelj introductiontomathematicalelasticity |