Chaos :: from simple models to complex systems /
Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introducti...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
©2010.
|
Schriftenreihe: | Series on advances in statistical mechanics ;
v. 17. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as : information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. |
Beschreibung: | 1 online resource (xx, 460 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814277662 9814277665 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn671654987 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101025s2010 njua ob 001 0 eng d | ||
010 | |a 2010487062 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d FVL |d OCLCQ |d UIU |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d OCLCQ |d JBG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d M8D |d UKAHL |d ZCU |d UKCRE |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
015 | |a GBB047978 |2 bnb | ||
016 | 7 | |a 015521081 |2 Uk | |
019 | |a 719420425 |a 743436970 |a 748608510 |a 961497984 |a 962567438 |a 988408568 |a 992060274 |a 1037739905 |a 1038685840 |a 1055369415 |a 1062896545 |a 1081220416 |a 1153516902 |a 1228545671 |a 1240523915 |a 1249224766 |a 1253406158 |a 1272924715 | ||
020 | |a 9789814277662 |q (electronic bk.) | ||
020 | |a 9814277665 |q (electronic bk.) | ||
020 | |z 9789814277655 | ||
020 | |z 9814277657 | ||
035 | |a (OCoLC)671654987 |z (OCoLC)719420425 |z (OCoLC)743436970 |z (OCoLC)748608510 |z (OCoLC)961497984 |z (OCoLC)962567438 |z (OCoLC)988408568 |z (OCoLC)992060274 |z (OCoLC)1037739905 |z (OCoLC)1038685840 |z (OCoLC)1055369415 |z (OCoLC)1062896545 |z (OCoLC)1081220416 |z (OCoLC)1153516902 |z (OCoLC)1228545671 |z (OCoLC)1240523915 |z (OCoLC)1249224766 |z (OCoLC)1253406158 |z (OCoLC)1272924715 | ||
050 | 4 | |a Q172.5.C45 |b C43 2010eb | |
072 | 7 | |a MAT |x 007000 |2 bisacsh | |
082 | 7 | |a 515.39 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Cencini, Massimo. | |
245 | 1 | 0 | |a Chaos : |b from simple models to complex systems / |c Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. |
260 | |a Hackensack, NJ : |b World Scientific, |c ©2010. | ||
300 | |a 1 online resource (xx, 460 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Series on advances in statistical mechanics ; |v v. 17 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks. | |
520 | |a Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as : information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. | ||
650 | 0 | |a Chaotic behavior in systems. |0 http://id.loc.gov/authorities/subjects/sh85022562 | |
650 | 0 | |a Dynamics. |0 http://id.loc.gov/authorities/subjects/sh85040316 | |
650 | 6 | |a Chaos. | |
650 | 6 | |a Dynamique. | |
650 | 7 | |a kinetics (dynamics) |2 aat | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x General. |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Dynamics |2 fast | |
700 | 1 | |a Cecconi, Fabio. | |
700 | 1 | |a Vulpiani, A. | |
776 | 0 | 8 | |i Print version: |a Cencini, Massimo. |t Chaos. |d Hackensack, NJ : World Scientific, ©2010 |z 9789814277655 |w (OCoLC)317922141 |
830 | 0 | |a Series on advances in statistical mechanics ; |v v. 17. |0 http://id.loc.gov/authorities/names/n84743172 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340555 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686377 | ||
938 | |a ebrary |b EBRY |n ebr10422181 | ||
938 | |a EBSCOhost |b EBSC |n 340555 | ||
938 | |a YBP Library Services |b YANK |n 3511445 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn671654987 |
---|---|
_version_ | 1816881743584559104 |
adam_text | |
any_adam_object | |
author | Cencini, Massimo |
author2 | Cecconi, Fabio Vulpiani, A. |
author2_role | |
author2_variant | f c fc a v av |
author_facet | Cencini, Massimo Cecconi, Fabio Vulpiani, A. |
author_role | |
author_sort | Cencini, Massimo |
author_variant | m c mc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q172 |
callnumber-raw | Q172.5.C45 C43 2010eb |
callnumber-search | Q172.5.C45 C43 2010eb |
callnumber-sort | Q 3172.5 C45 C43 42010EB |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks. |
ctrlnum | (OCoLC)671654987 |
dewey-full | 515.39 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.39 |
dewey-search | 515.39 |
dewey-sort | 3515.39 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07794cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn671654987</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101025s2010 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2010487062</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">ZCU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB047978</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015521081</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">719420425</subfield><subfield code="a">743436970</subfield><subfield code="a">748608510</subfield><subfield code="a">961497984</subfield><subfield code="a">962567438</subfield><subfield code="a">988408568</subfield><subfield code="a">992060274</subfield><subfield code="a">1037739905</subfield><subfield code="a">1038685840</subfield><subfield code="a">1055369415</subfield><subfield code="a">1062896545</subfield><subfield code="a">1081220416</subfield><subfield code="a">1153516902</subfield><subfield code="a">1228545671</subfield><subfield code="a">1240523915</subfield><subfield code="a">1249224766</subfield><subfield code="a">1253406158</subfield><subfield code="a">1272924715</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814277662</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814277665</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814277655</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814277657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)671654987</subfield><subfield code="z">(OCoLC)719420425</subfield><subfield code="z">(OCoLC)743436970</subfield><subfield code="z">(OCoLC)748608510</subfield><subfield code="z">(OCoLC)961497984</subfield><subfield code="z">(OCoLC)962567438</subfield><subfield code="z">(OCoLC)988408568</subfield><subfield code="z">(OCoLC)992060274</subfield><subfield code="z">(OCoLC)1037739905</subfield><subfield code="z">(OCoLC)1038685840</subfield><subfield code="z">(OCoLC)1055369415</subfield><subfield code="z">(OCoLC)1062896545</subfield><subfield code="z">(OCoLC)1081220416</subfield><subfield code="z">(OCoLC)1153516902</subfield><subfield code="z">(OCoLC)1228545671</subfield><subfield code="z">(OCoLC)1240523915</subfield><subfield code="z">(OCoLC)1249224766</subfield><subfield code="z">(OCoLC)1253406158</subfield><subfield code="z">(OCoLC)1272924715</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q172.5.C45</subfield><subfield code="b">C43 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.39</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cencini, Massimo.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaos :</subfield><subfield code="b">from simple models to complex systems /</subfield><subfield code="c">Massimo Cencini, Fabio Cecconi, Angelo Vulpiani.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xx, 460 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in statistical mechanics ;</subfield><subfield code="v">v. 17</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as : information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chaotic behavior in systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022562</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Dynamics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85040316</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chaos.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">kinetics (dynamics)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecconi, Fabio.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vulpiani, A.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cencini, Massimo.</subfield><subfield code="t">Chaos.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2010</subfield><subfield code="z">9789814277655</subfield><subfield code="w">(OCoLC)317922141</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in statistical mechanics ;</subfield><subfield code="v">v. 17.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84743172</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340555</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24686377</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422181</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340555</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511445</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn671654987 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:34Z |
institution | BVB |
isbn | 9789814277662 9814277665 |
language | English |
lccn | 2010487062 |
oclc_num | 671654987 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xx, 460 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific, |
record_format | marc |
series | Series on advances in statistical mechanics ; |
series2 | Series on advances in statistical mechanics ; |
spelling | Cencini, Massimo. Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. Hackensack, NJ : World Scientific, ©2010. 1 online resource (xx, 460 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Series on advances in statistical mechanics ; v. 17 Includes bibliographical references and index. Print version record. Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks. Chaos : from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as : information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Chaos. Dynamique. kinetics (dynamics) aat MATHEMATICS Differential Equations General. bisacsh Chaotic behavior in systems fast Dynamics fast Cecconi, Fabio. Vulpiani, A. Print version: Cencini, Massimo. Chaos. Hackensack, NJ : World Scientific, ©2010 9789814277655 (OCoLC)317922141 Series on advances in statistical mechanics ; v. 17. http://id.loc.gov/authorities/names/n84743172 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340555 Volltext |
spellingShingle | Cencini, Massimo Chaos : from simple models to complex systems / Series on advances in statistical mechanics ; Introduction to dynamical systems and chaos. 1. First encounter with chaos. 1.1. Prologue. 1.2. The nonlinear pendulum. 1.3. The damped nonlinear pendulum. 1.4. The vertically driven and damped nonlinear pendulum. 1.5. What about the predictability of pendulum evolution? 1. 6. Epilogue. 2. The language of dynamical systems. 2.1. Ordinary Differential Equations (ODE). 2.2. Discrete time dynamical systems : maps. 2.3. The role of dimension. 2.4. Stability theory. 2.5. Exercises. 3. Examples of chaotic behaviors. 3.1. The logistic map. 3.2. The Lorenz model. 3.3. The Hénon-Heiles system. 3.4. What did we learn and what will we learn? 3.5. Closing remark. 3.6. Exercises. 4. Probabilistic approach to chaos. 4.1. An informal probabilistic approach. 4.2. Time evolution of the probability density. 4.3. Ergodicity. 4.4. Mixing. 4.5. Markov chains and chaotic maps. 4.6. Natural measure. 4.7. Exercises. 5. Characterization of chaotic dynamical systems. 5.1. Strange attractors. 5.2. Fractals and multifractals. 5.3. Characteristic Lyapunov exponents. 5.4. Exercises. 6. From order to chaos in dissipative systems. 6.1. The scenarios for the transition to turbulence. 6.2. The period doubling transition. 6.3. Transition to chaos through intermittency : Pomeau-Manneville scenario. 6.4. A mathematical remark. 6.5. Transition to turbulence in real systems. 6.6. Exercises. 7. Chaos in Hamiltonian systems. 7.1. The integrability problem. 7.2. Kolmogorov-Arnold-Moser theorem and the survival of tori. 7.3. Poincaré-Birkhoff theorem and the fate of resonant tori. 7.4. Chaos around separatrices. 7.5. Melnikov's theory. 7.6. Exercises -- Advanced topics and applications : from information theory to turbulence. 8. Chaos and information theory. 8.1. Chaos, randomness and information. 8.2. Information theory, coding and compression. 8.3. Algorithmic complexity. 8.4. Entropy and complexity in chaotic systems. 8.5. Concluding remarks. 8.6. Exercises. 9. Coarse-grained information and large scale predictability. 9.1. Finite-resolution versus infinite-resolution descriptions. 9.2. [symbol]-entropy in information theory : lossless versus lossy coding. 9.3. [symbol]-entropy in dynamical systems and stochastic processes. 9.4. The finite size lyapunov exponent (FSLE). 9.5. Exercises. 10. Chaos in numerical and laboratory experiments. 10.1. Chaos in silico. 10.2. Chaos detection in experiments. 10.3. Can chaos be distinguished from noise? 10.4. Prediction and modeling from data. 11. Chaos in low dimensional systems. 11.1. Celestial mechanics. 11.2. Chaos and transport phenomena in fluids. 11.3. Chaos in population biology and chemistry. 11.4. Synchronization of chaotic systems. 12. Spatiotemporal chaos. 12.1. Systems and models for spatiotemporal chaos. 12.2. The thermodynamic limit. 12.3. Growth and propagation of space-time perturbations. 12.4. Non-equilibrium phenomena and spatiotemporal chaos. 12.5. Coarse-grained description of high dimensional chaos. 13. Turbulence as a dynamical system problem. 13.1. Fluids as dynamical systems. 13.2. Statistical mechanics of ideal fluids and turbulence phenomenology. 13.3. From partial differential equations to ordinary differential equations. 13.4. Predictability in turbulent systems. 14. Chaos and statistical mechanics : Fermi-Pasta-Ulam a case study. 14.1. An influential unpublished paper. 14.2. A random walk on the role of ergodicity and chaos for equilibrium statistical mechanics. 14.3. Final remarks. Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Chaos. Dynamique. kinetics (dynamics) aat MATHEMATICS Differential Equations General. bisacsh Chaotic behavior in systems fast Dynamics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85022562 http://id.loc.gov/authorities/subjects/sh85040316 |
title | Chaos : from simple models to complex systems / |
title_auth | Chaos : from simple models to complex systems / |
title_exact_search | Chaos : from simple models to complex systems / |
title_full | Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. |
title_fullStr | Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. |
title_full_unstemmed | Chaos : from simple models to complex systems / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani. |
title_short | Chaos : |
title_sort | chaos from simple models to complex systems |
title_sub | from simple models to complex systems / |
topic | Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Dynamics. http://id.loc.gov/authorities/subjects/sh85040316 Chaos. Dynamique. kinetics (dynamics) aat MATHEMATICS Differential Equations General. bisacsh Chaotic behavior in systems fast Dynamics fast |
topic_facet | Chaotic behavior in systems. Dynamics. Chaos. Dynamique. kinetics (dynamics) MATHEMATICS Differential Equations General. Chaotic behavior in systems Dynamics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340555 |
work_keys_str_mv | AT cencinimassimo chaosfromsimplemodelstocomplexsystems AT cecconifabio chaosfromsimplemodelstocomplexsystems AT vulpiania chaosfromsimplemodelstocomplexsystems |