Random matrix theory and its applications :: multivariate statistics and wireless communications /
Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
©2009.
|
Schriftenreihe: | Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;
v. 18. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th. |
Beschreibung: | 1 online resource (x, 165 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9789814273121 9814273120 1282758047 9781282758049 9786612758041 661275804X |
ISSN: | 1793-0758 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn671648582 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101025s2009 njua ob 000 0 eng d | ||
010 | |a 2009282238 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d OCLCQ |d DEBSZ |d OCLCQ |d MHW |d NLGGC |d OCLCO |d IDEBK |d EBLCP |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d JBG |d AGLDB |d MOR |d CCO |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d AU@ |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d VLY |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 712995076 |a 729020083 |a 764546211 |a 816581923 |a 961535057 |a 962632115 |a 988409658 |a 992059729 |a 1037785989 |a 1038685841 |a 1055395257 |a 1058147851 |a 1081238017 |a 1153546180 |a 1162524608 |a 1228570602 |a 1240509826 |a 1241927324 |a 1249220552 |a 1253416534 |a 1259072021 |a 1272921725 |a 1290077334 |a 1300493845 | ||
020 | |a 9789814273121 |q (electronic bk.) | ||
020 | |a 9814273120 |q (electronic bk.) | ||
020 | |z 9789814273114 | ||
020 | |z 9814273112 | ||
020 | |a 1282758047 | ||
020 | |a 9781282758049 | ||
020 | |a 9786612758041 | ||
020 | |a 661275804X | ||
035 | |a (OCoLC)671648582 |z (OCoLC)712995076 |z (OCoLC)729020083 |z (OCoLC)764546211 |z (OCoLC)816581923 |z (OCoLC)961535057 |z (OCoLC)962632115 |z (OCoLC)988409658 |z (OCoLC)992059729 |z (OCoLC)1037785989 |z (OCoLC)1038685841 |z (OCoLC)1055395257 |z (OCoLC)1058147851 |z (OCoLC)1081238017 |z (OCoLC)1153546180 |z (OCoLC)1162524608 |z (OCoLC)1228570602 |z (OCoLC)1240509826 |z (OCoLC)1241927324 |z (OCoLC)1249220552 |z (OCoLC)1253416534 |z (OCoLC)1259072021 |z (OCoLC)1272921725 |z (OCoLC)1290077334 |z (OCoLC)1300493845 | ||
050 | 4 | |a QA188 |b .R36 2009eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Random matrix theory and its applications : |b multivariate statistics and wireless communications / |c editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. |
260 | |a Hackensack, NJ : |b World Scientific, |c ©2009. | ||
300 | |a 1 online resource (x, 165 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes series, |x 1793-0758 ; |v v. 18 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th. | ||
505 | 0 | |6 880-01 |a Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits. | |
505 | 8 | |a 2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References. | |
505 | 8 | |a Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels. | |
505 | 8 | |a 8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References. | |
546 | |a English. | ||
650 | 0 | |a Random matrices. |0 http://id.loc.gov/authorities/subjects/sh86001920 | |
650 | 4 | |a Algebra. | |
650 | 4 | |a Physical Sciences & Mathematics. | |
650 | 4 | |a Random matrices. | |
650 | 4 | |a Mathematics. | |
650 | 6 | |a Matrices aléatoires. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Random matrices |2 fast | |
700 | 1 | |a Bai, Zhidong. | |
700 | 1 | |a Chen, Yang. | |
700 | 1 | |a Liang, Ying-Chang. | |
758 | |i has work: |a Random matrix theory and its applications (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGfTdVMM3rjqTQvJfKwQv3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Random matrix theory and its applications. |d Hackensack, NJ : World Scientific, ©2009 |z 9789814273114 |w (OCoLC)298782419 |
830 | 0 | |a Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; |v v. 18. |0 http://id.loc.gov/authorities/names/no2003042729 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340508 |3 Volltext |
880 | 8 | |6 505-01/(S |a 3. Why Asymptotic Random Matrix Theory4. η and Shannon Transforms: Theory and Applications; 5. Applications to Wireless Communications; 5.1. CDMA; 5.1.1. DS-CDMA frequency-flat fading; 5.1.2. Multi-carrier CDMA; 5.2. Multi-antenna channels; 5.3. Separable correlation model; 5.4. Non-separable correlation model; 5.5. Non-ergodic channels; References; The Replica Method in Multiuser Communications Ralf R.M uller; 1. Introduction; 2. Self Average; 3. Free Energy; 4. The Meaning of the Energy Function; 5. Replica Continuity; 6. Saddle Point Integration; 7. Replica Symmetry. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686326 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1679389 | ||
938 | |a ebrary |b EBRY |n ebr10422343 | ||
938 | |a EBSCOhost |b EBSC |n 340508 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 275804 | ||
938 | |a YBP Library Services |b YANK |n 3511416 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn671648582 |
---|---|
_version_ | 1816881743519547392 |
adam_text | |
any_adam_object | |
author2 | Bai, Zhidong Chen, Yang Liang, Ying-Chang |
author2_role | |
author2_variant | z b zb y c yc y c l ycl |
author_facet | Bai, Zhidong Chen, Yang Liang, Ying-Chang |
author_sort | Bai, Zhidong |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .R36 2009eb |
callnumber-search | QA188 .R36 2009eb |
callnumber-sort | QA 3188 R36 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits. 2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References. Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels. 8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References. |
ctrlnum | (OCoLC)671648582 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06925cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn671648582</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101025s2009 njua ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2009282238</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">712995076</subfield><subfield code="a">729020083</subfield><subfield code="a">764546211</subfield><subfield code="a">816581923</subfield><subfield code="a">961535057</subfield><subfield code="a">962632115</subfield><subfield code="a">988409658</subfield><subfield code="a">992059729</subfield><subfield code="a">1037785989</subfield><subfield code="a">1038685841</subfield><subfield code="a">1055395257</subfield><subfield code="a">1058147851</subfield><subfield code="a">1081238017</subfield><subfield code="a">1153546180</subfield><subfield code="a">1162524608</subfield><subfield code="a">1228570602</subfield><subfield code="a">1240509826</subfield><subfield code="a">1241927324</subfield><subfield code="a">1249220552</subfield><subfield code="a">1253416534</subfield><subfield code="a">1259072021</subfield><subfield code="a">1272921725</subfield><subfield code="a">1290077334</subfield><subfield code="a">1300493845</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814273121</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814273120</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814273114</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814273112</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282758047</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282758049</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612758041</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">661275804X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)671648582</subfield><subfield code="z">(OCoLC)712995076</subfield><subfield code="z">(OCoLC)729020083</subfield><subfield code="z">(OCoLC)764546211</subfield><subfield code="z">(OCoLC)816581923</subfield><subfield code="z">(OCoLC)961535057</subfield><subfield code="z">(OCoLC)962632115</subfield><subfield code="z">(OCoLC)988409658</subfield><subfield code="z">(OCoLC)992059729</subfield><subfield code="z">(OCoLC)1037785989</subfield><subfield code="z">(OCoLC)1038685841</subfield><subfield code="z">(OCoLC)1055395257</subfield><subfield code="z">(OCoLC)1058147851</subfield><subfield code="z">(OCoLC)1081238017</subfield><subfield code="z">(OCoLC)1153546180</subfield><subfield code="z">(OCoLC)1162524608</subfield><subfield code="z">(OCoLC)1228570602</subfield><subfield code="z">(OCoLC)1240509826</subfield><subfield code="z">(OCoLC)1241927324</subfield><subfield code="z">(OCoLC)1249220552</subfield><subfield code="z">(OCoLC)1253416534</subfield><subfield code="z">(OCoLC)1259072021</subfield><subfield code="z">(OCoLC)1272921725</subfield><subfield code="z">(OCoLC)1290077334</subfield><subfield code="z">(OCoLC)1300493845</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.R36 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Random matrix theory and its applications :</subfield><subfield code="b">multivariate statistics and wireless communications /</subfield><subfield code="c">editors, Zhidong Bai, Yang Chen, Ying-Chang Liang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 165 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes series,</subfield><subfield code="x">1793-0758 ;</subfield><subfield code="v">v. 18</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86001920</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Sciences & Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices aléatoires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Zhidong.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yang.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Ying-Chang.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Random matrix theory and its applications (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGfTdVMM3rjqTQvJfKwQv3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Random matrix theory and its applications.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2009</subfield><subfield code="z">9789814273114</subfield><subfield code="w">(OCoLC)298782419</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ;</subfield><subfield code="v">v. 18.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2003042729</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340508</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">3. Why Asymptotic Random Matrix Theory4. η and Shannon Transforms: Theory and Applications; 5. Applications to Wireless Communications; 5.1. CDMA; 5.1.1. DS-CDMA frequency-flat fading; 5.1.2. Multi-carrier CDMA; 5.2. Multi-antenna channels; 5.3. Separable correlation model; 5.4. Non-separable correlation model; 5.5. Non-ergodic channels; References; The Replica Method in Multiuser Communications Ralf R.M uller; 1. Introduction; 2. Self Average; 3. Free Energy; 4. The Meaning of the Energy Function; 5. Replica Continuity; 6. Saddle Point Integration; 7. Replica Symmetry.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24686326</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679389</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422343</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340508</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">275804</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511416</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn671648582 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:34Z |
institution | BVB |
isbn | 9789814273121 9814273120 1282758047 9781282758049 9786612758041 661275804X |
issn | 1793-0758 ; |
language | English |
lccn | 2009282238 |
oclc_num | 671648582 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 165 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific, |
record_format | marc |
series | Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; |
series2 | Lecture notes series, |
spelling | Random matrix theory and its applications : multivariate statistics and wireless communications / editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. Hackensack, NJ : World Scientific, ©2009. 1 online resource (x, 165 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Lecture notes series, 1793-0758 ; v. 18 Includes bibliographical references. Print version record. Random matrix theory has a long history, beginning in the first instance in multivariate statistics. It was used by Wigner to supply explanations for the important regularity features of the apparently random dispositions of the energy levels of heavy nuclei. The subject was further deeply developed under the important leadership of Dyson, Gaudin and Mehta, and other mathematical physicists. In the early 1990s, random matrix theory witnessed applications in string theory and deep connections with operator theory, and the integrable systems were established by Tracy and Widom. More recently, th. 880-01 Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits. 2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References. Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels. 8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References. English. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Algebra. Physical Sciences & Mathematics. Random matrices. Mathematics. Matrices aléatoires. MATHEMATICS Algebra Intermediate. bisacsh Random matrices fast Bai, Zhidong. Chen, Yang. Liang, Ying-Chang. has work: Random matrix theory and its applications (Text) https://id.oclc.org/worldcat/entity/E39PCGfTdVMM3rjqTQvJfKwQv3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Random matrix theory and its applications. Hackensack, NJ : World Scientific, ©2009 9789814273114 (OCoLC)298782419 Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; v. 18. http://id.loc.gov/authorities/names/no2003042729 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340508 Volltext 505-01/(S 3. Why Asymptotic Random Matrix Theory4. η and Shannon Transforms: Theory and Applications; 5. Applications to Wireless Communications; 5.1. CDMA; 5.1.1. DS-CDMA frequency-flat fading; 5.1.2. Multi-carrier CDMA; 5.2. Multi-antenna channels; 5.3. Separable correlation model; 5.4. Non-separable correlation model; 5.5. Non-ergodic channels; References; The Replica Method in Multiuser Communications Ralf R.M uller; 1. Introduction; 2. Self Average; 3. Free Energy; 4. The Meaning of the Energy Function; 5. Replica Continuity; 6. Saddle Point Integration; 7. Replica Symmetry. |
spellingShingle | Random matrix theory and its applications : multivariate statistics and wireless communications / Lecture notes series (National University of Singapore. Institute for Mathematical Sciences) ; Foreword; Preface; The Stieltjes Transform and its Role in Eigenvalue Behavior of Large Dimensional Random Matrices Jack W. Silverstein; 1. Introduction; 2. Why These Theorems are True; 3. The Other Equations; 4. Proof of Uniqueness of (1.1); 5. Truncation and Centralization; 6. The Limiting Distributions; 7. Other Uses of the Stieltjes Transform; References; Beta Random Matrix Ensembles Peter J. Forrester; 1. Introduction; 1.1. Log-gas systems; 1.2. Quantum many body systems; 1.3. Selberg correlation integrals; 1.4. Correlation functions; 1.5. Scaled limits. 2. Physical Random Matrix Ensembles2.1. Heavy nuclei and quantum mechanics; 2.2. Dirac operators and QCD; 2.3. Random scattering matrices; 2.4. Quantum conductance problems; 2.5. Eigenvalue p.d.f.'s for Hermitian matrices; 2.6. Eigenvalue p.d.f.'s for Wishart matrices; 2.7. Eigenvalue p.d.f.'s for unitary matrices; 2.8. Eigenvalue p.d.f.'s for blocks of unitary matrices; 2.9. Classical random matrix ensembles; 3.-Ensembles of Random Matrices; 3.1. Gaussian ensemble; 4. Laguerre Ensemble; 5. Recent Developments; Acknowledgments; References. Future of Statistics Zhidong Bai and Shurong Zheng1. Introduction; 2. A Multivariate Two-Sample Problem; 2.1. Asymptotic power of T 2 test; 2.2. Dempster's NET; 2.3. Bai and Saranadasa's ANT; 2.4. Conclusions and simulations; 3. A Likelihood Ratio Test on Covariance Matrix; 3.1. Classical tests; 3.2. Random matrix theory; 3.3. Testing based on RMT limiting CLT; 3.4. Simulation results; 4. Conclusions; Acknowledgment; References; The and Shannon Transforms: A Bridge between Random Matrices and Wireless Communications Antonia M. Tulino; 1. Introduction; 2. Wireless Communication Channels. 8. Example: Analysis of Large CDMA Systems8.1. Gaussian prior distribution; 8.2. Binary prior distribution; 8.3. Arbitrary prior distribution; 9. Phase Transitions; References. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Algebra. Physical Sciences & Mathematics. Random matrices. Mathematics. Matrices aléatoires. MATHEMATICS Algebra Intermediate. bisacsh Random matrices fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh86001920 |
title | Random matrix theory and its applications : multivariate statistics and wireless communications / |
title_auth | Random matrix theory and its applications : multivariate statistics and wireless communications / |
title_exact_search | Random matrix theory and its applications : multivariate statistics and wireless communications / |
title_full | Random matrix theory and its applications : multivariate statistics and wireless communications / editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. |
title_fullStr | Random matrix theory and its applications : multivariate statistics and wireless communications / editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. |
title_full_unstemmed | Random matrix theory and its applications : multivariate statistics and wireless communications / editors, Zhidong Bai, Yang Chen, Ying-Chang Liang. |
title_short | Random matrix theory and its applications : |
title_sort | random matrix theory and its applications multivariate statistics and wireless communications |
title_sub | multivariate statistics and wireless communications / |
topic | Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Algebra. Physical Sciences & Mathematics. Random matrices. Mathematics. Matrices aléatoires. MATHEMATICS Algebra Intermediate. bisacsh Random matrices fast |
topic_facet | Random matrices. Algebra. Physical Sciences & Mathematics. Mathematics. Matrices aléatoires. MATHEMATICS Algebra Intermediate. Random matrices |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340508 |
work_keys_str_mv | AT baizhidong randommatrixtheoryanditsapplicationsmultivariatestatisticsandwirelesscommunications AT chenyang randommatrixtheoryanditsapplicationsmultivariatestatisticsandwirelesscommunications AT liangyingchang randommatrixtheoryanditsapplicationsmultivariatestatisticsandwirelesscommunications |