Topological library.: Part 1, Cobordisms and their applications /
This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in t...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English Russian |
Veröffentlicht: |
Singapore ; London :
World Scientific,
2007.
|
Schriftenreihe: | K & E series on knots and everything ;
39. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "Singular homologies of fibre spaces."This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted. |
Beschreibung: | 1 online resource. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789812772107 9812772103 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn666956616 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100929s2007 si ob 001 0 eng d | ||
040 | |a IDEBK |b eng |e pn |c IDEBK |d OCLCQ |d N$T |d DEBSZ |d OCLCQ |d MHW |d OCLCQ |d STF |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d AU@ |d U3G |d M8D |d REC |d K6U |d LEAUB |d ESU |d VLY |d DGN |d CN6UV |d AJS |d QGK |d CNNOR |d OCLCO |d DST |d TNZ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d OCLCQ | ||
066 | |c (Q | ||
019 | |a 1058651588 |a 1086513667 | ||
020 | |a 9789812772107 |q (electronic bk.) | ||
020 | |a 9812772103 |q (electronic bk.) | ||
035 | |a (OCoLC)666956616 |z (OCoLC)1058651588 |z (OCoLC)1086513667 | ||
041 | 1 | |a eng |h rus | |
050 | 4 | |a QA613.66 |b .C63 2007 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.72 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Topological library. |n Part 1, |p Cobordisms and their applications / |c edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov. |
246 | 3 | |a Cobordisms and their applications | |
260 | |a Singapore ; |a London : |b World Scientific, |c 2007. | ||
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on knots and everything ; |v 39 | |
504 | |a Includes bibliographical references and index. | ||
546 | |a Translated from the Russian. | ||
520 | |a This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "Singular homologies of fibre spaces."This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted. | ||
505 | 0 | |a 1. L.S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M.M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrods problem. ch. IV. Cobordant differentiable manifolds -- 3. S.P. Novikov. Homotopy properties of Thom complexes / translated by V.O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M.L. Glasser. | |
650 | 0 | |a Cobordism theory. |0 http://id.loc.gov/authorities/subjects/sh85027549 | |
650 | 6 | |a Théorie des cobordismes. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Cobordism theory |2 fast | |
700 | 1 | |a Novikov, S. P. |q (Sergeĭ Petrovich) |1 https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3 |0 http://id.loc.gov/authorities/names/n80163746 | |
700 | 1 | |a Taĭmanov, I. A. |q (Iskander Asanovich), |d 1961- |1 https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C |0 http://id.loc.gov/authorities/names/n2006040009 | |
830 | 0 | |a K & E series on knots and everything ; |v 39. |0 http://id.loc.gov/authorities/names/n91052105 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518625 |3 Volltext |
880 | 0 | |6 505-00/(Q |a 1. L. S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M. M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrodѫs problem. ch. IV. Cobordant differentiable manifolds -- 3. S. P. Novikov. Homotopy properties of Thom complexes / translated by V. O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M. L. Glasser. | |
938 | |a EBSCOhost |b EBSC |n 518625 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 191192 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn666956616 |
---|---|
_version_ | 1816881740559417344 |
adam_text | |
any_adam_object | |
author2 | Novikov, S. P. (Sergeĭ Petrovich) Taĭmanov, I. A. (Iskander Asanovich), 1961- |
author2_role | |
author2_variant | s p n sp spn i a t ia iat |
author_GND | http://id.loc.gov/authorities/names/n80163746 http://id.loc.gov/authorities/names/n2006040009 |
author_facet | Novikov, S. P. (Sergeĭ Petrovich) Taĭmanov, I. A. (Iskander Asanovich), 1961- |
author_sort | Novikov, S. P. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.66 .C63 2007 |
callnumber-search | QA613.66 .C63 2007 |
callnumber-sort | QA 3613.66 C63 42007 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. L.S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M.M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrods problem. ch. IV. Cobordant differentiable manifolds -- 3. S.P. Novikov. Homotopy properties of Thom complexes / translated by V.O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M.L. Glasser. |
ctrlnum | (OCoLC)666956616 |
dewey-full | 514.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.72 |
dewey-search | 514.72 |
dewey-sort | 3514.72 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05138cam a2200517 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn666956616</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">100929s2007 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">U3G</subfield><subfield code="d">M8D</subfield><subfield code="d">REC</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">ESU</subfield><subfield code="d">VLY</subfield><subfield code="d">DGN</subfield><subfield code="d">CN6UV</subfield><subfield code="d">AJS</subfield><subfield code="d">QGK</subfield><subfield code="d">CNNOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DST</subfield><subfield code="d">TNZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(Q</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1058651588</subfield><subfield code="a">1086513667</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812772107</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812772103</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)666956616</subfield><subfield code="z">(OCoLC)1058651588</subfield><subfield code="z">(OCoLC)1086513667</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">rus</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613.66</subfield><subfield code="b">.C63 2007</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.72</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Topological library.</subfield><subfield code="n">Part 1,</subfield><subfield code="p">Cobordisms and their applications /</subfield><subfield code="c">edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov.</subfield></datafield><datafield tag="246" ind1="3" ind2=" "><subfield code="a">Cobordisms and their applications</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">London :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on knots and everything ;</subfield><subfield code="v">39</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Translated from the Russian.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "Singular homologies of fibre spaces."This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. L.S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M.M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrods problem. ch. IV. Cobordant differentiable manifolds -- 3. S.P. Novikov. Homotopy properties of Thom complexes / translated by V.O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M.L. Glasser.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cobordism theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85027549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des cobordismes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cobordism theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, S. P.</subfield><subfield code="q">(Sergeĭ Petrovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80163746</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taĭmanov, I. A.</subfield><subfield code="q">(Iskander Asanovich),</subfield><subfield code="d">1961-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006040009</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">K & E series on knots and everything ;</subfield><subfield code="v">39.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n91052105</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518625</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-00/(Q</subfield><subfield code="a">1. L. S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M. M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrodѫs problem. ch. IV. Cobordant differentiable manifolds -- 3. S. P. Novikov. Homotopy properties of Thom complexes / translated by V. O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M. L. Glasser.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">518625</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">191192</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn666956616 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:31Z |
institution | BVB |
isbn | 9789812772107 9812772103 |
language | English Russian |
oclc_num | 666956616 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
series | K & E series on knots and everything ; |
series2 | Series on knots and everything ; |
spelling | Topological library. Part 1, Cobordisms and their applications / edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov. Cobordisms and their applications Singapore ; London : World Scientific, 2007. 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on knots and everything ; 39 Includes bibliographical references and index. Translated from the Russian. This is the first of three volumes collecting the original and now classic works in topology written in the 50s-60s. The original methods and constructions from these works are properly documented for the first time in this book. No existing book covers the beautiful ensemble of methods created in topology starting from approximately 1950, that is, from Serre's celebrated "Singular homologies of fibre spaces."This is the translation of the Russian edition published in 2005 with one entry (Milnor's lectures on the h-cobordism) omitted. 1. L.S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M.M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrods problem. ch. IV. Cobordant differentiable manifolds -- 3. S.P. Novikov. Homotopy properties of Thom complexes / translated by V.O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M.L. Glasser. Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast Novikov, S. P. (Sergeĭ Petrovich) https://id.oclc.org/worldcat/entity/E39PBJrKQc8HftgygRPHQGrXh3 http://id.loc.gov/authorities/names/n80163746 Taĭmanov, I. A. (Iskander Asanovich), 1961- https://id.oclc.org/worldcat/entity/E39PBJbxyDFF8GtgtbqxcXrg8C http://id.loc.gov/authorities/names/n2006040009 K & E series on knots and everything ; 39. http://id.loc.gov/authorities/names/n91052105 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518625 Volltext 505-00/(Q 1. L. S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M. M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrodѫs problem. ch. IV. Cobordant differentiable manifolds -- 3. S. P. Novikov. Homotopy properties of Thom complexes / translated by V. O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M. L. Glasser. |
spellingShingle | Topological library. K & E series on knots and everything ; 1. L.S. Pontrjagin. Smooth manifolds and their applications in homotopy theory -- Introduction -- ch. I. Smooth manifolds and their maps -- ch. II. Framed manifolds -- ch. III. The Hopf invariant -- ch. IV. Classification of mappings -- 2. R. Thom. Some "global" properties ofdifferentiable manifolds / translated by V.O. Manturov with M.M. Postnikov's comments. Introduction. ch. I. Properties of differentiable mappings. ch. II. Submanifolds and homology classes ofa manifold. ch. III. On Steenrods problem. ch. IV. Cobordant differentiable manifolds -- 3. S.P. Novikov. Homotopy properties of Thom complexes / translated by V.O. Manturov. Introduction. ch. I. Thom's spaces. ch. II. Inner honology rings. ch. III. Realization of cycles -- 4. Generalized Poincare's conjecture in dimensions greater than four -- 5. On the structure of manifolds -- 6. On the formal group laws of unoriented and complex cobordism theory -- 7. Formal groups and their role in algebraic topology approach / translated by V.O. Manturov -- 8. Formal groups, power systems and Adams operators / translated by M.L. Glasser. Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85027549 |
title | Topological library. |
title_alt | Cobordisms and their applications |
title_auth | Topological library. |
title_exact_search | Topological library. |
title_full | Topological library. Part 1, Cobordisms and their applications / edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov. |
title_fullStr | Topological library. Part 1, Cobordisms and their applications / edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov. |
title_full_unstemmed | Topological library. Part 1, Cobordisms and their applications / edited by S.P. Novikov and I.A. Taimanov ; translated by V.O. Manturov. |
title_short | Topological library. |
title_sort | topological library cobordisms and their applications |
topic | Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast |
topic_facet | Cobordism theory. Théorie des cobordismes. MATHEMATICS Topology. Cobordism theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518625 |
work_keys_str_mv | AT novikovsp topologicallibrarypart1 AT taimanovia topologicallibrarypart1 AT novikovsp cobordismsandtheirapplications AT taimanovia cobordismsandtheirapplications |