Log-gases and random matrices /:
Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
©2010.
|
Schriftenreihe: | London Mathematical Society monographs ;
new ser., no. 34. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory. |
Beschreibung: | 1 online resource (xiv, 791 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 765-784) and index. |
ISBN: | 9781400835416 1400835410 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn656260887 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 100816s2010 njua ob 001 0 eng d | ||
010 | |z 2009053314 | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d EBLCP |d OSU |d IDEBK |d OCLCQ |d CDX |d E7B |d OCLCQ |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d MHW |d JSTOR |d OCLCF |d OCLCQ |d NLGGC |d OCLCQ |d S3O |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d ZCU |d OTZ |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d JBG |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d MM9 |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL |d OCLCQ | ||
019 | |a 650959992 |a 657608121 |a 706713283 |a 961515289 |a 962593211 |a 988508625 |a 992109191 |a 994932865 |a 1037918586 |a 1038643749 |a 1045513663 |a 1055354506 |a 1064235872 |a 1153463042 |a 1181902912 |a 1228605272 | ||
020 | |a 9781400835416 |q (electronic bk.) | ||
020 | |a 1400835410 |q (electronic bk.) | ||
020 | |z 9780691128290 |q (hardcover ; |q alk. paper) | ||
020 | |z 0691128294 |q (hardcover ; |q alk. paper) | ||
024 | 8 | |a 9786612641749 | |
035 | |a (OCoLC)656260887 |z (OCoLC)650959992 |z (OCoLC)657608121 |z (OCoLC)706713283 |z (OCoLC)961515289 |z (OCoLC)962593211 |z (OCoLC)988508625 |z (OCoLC)992109191 |z (OCoLC)994932865 |z (OCoLC)1037918586 |z (OCoLC)1038643749 |z (OCoLC)1045513663 |z (OCoLC)1055354506 |z (OCoLC)1064235872 |z (OCoLC)1153463042 |z (OCoLC)1181902912 |z (OCoLC)1228605272 | ||
037 | |a 264174 |b MIL | ||
037 | |a 22573/cttvjpw |b JSTOR | ||
050 | 4 | |a QA188 |b .F656 2010eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
072 | 7 | |a MAT029000 |2 bisacsh | |
072 | 7 | |a MAT019000 |2 bisacsh | |
082 | 7 | |a 512.9434 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Forrester, Peter |q (Peter John) |1 https://id.oclc.org/worldcat/entity/E39PBJxWR4yQR3jjXrwHFymGHC |0 http://id.loc.gov/authorities/names/n88611027 | |
245 | 1 | 0 | |a Log-gases and random matrices / |c P.J. Forrester. |
260 | |a Princeton : |b Princeton University Press, |c ©2010. | ||
300 | |a 1 online resource (xiv, 791 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society monographs series ; |v v. 34 | |
504 | |a Includes bibliographical references (pages 765-784) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory. | ||
505 | 0 | |a Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ß = 2; Chapter 6. Correlation functions at ß = 1 and 4; Chapter 7. Scaled limits at ß = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials. | |
505 | 8 | |a Chapter 13. Correlations for general ßChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index. | |
650 | 0 | |a Random matrices. |0 http://id.loc.gov/authorities/subjects/sh86001920 | |
650 | 0 | |a Jacobi polynomials. |0 http://id.loc.gov/authorities/subjects/sh85069211 | |
650 | 0 | |a Integral theorems. |0 http://id.loc.gov/authorities/subjects/sh85067097 | |
650 | 0 | |a Mathematics. |0 http://id.loc.gov/authorities/subjects/sh85082139 | |
650 | 6 | |a Matrices aléatoires. | |
650 | 6 | |a Polynômes de Jacobi. | |
650 | 6 | |a Théorèmes intégraux. | |
650 | 6 | |a Mathématiques. | |
650 | 7 | |a applied mathematics. |2 aat | |
650 | 7 | |a mathematics. |2 aat | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Integral theorems |2 fast | |
650 | 7 | |a Jacobi polynomials |2 fast | |
650 | 7 | |a Mathematics |2 fast | |
650 | 7 | |a Random matrices |2 fast | |
776 | 0 | 8 | |i Print version: |a Forrester, Peter (Peter John). |t Log-gases and random matrices. |d Princeton : Princeton University Press, ©2010 |z 9780691128290 |w (DLC) 2009053314 |w (OCoLC)466341422 |
830 | 0 | |a London Mathematical Society monographs ; |v new ser., no. 34. |0 http://id.loc.gov/authorities/names/n86741199 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329794 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073768 | ||
938 | |a Coutts Information Services |b COUT |n 13929212 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL557142 | ||
938 | |a ebrary |b EBRY |n ebr10397711 | ||
938 | |a EBSCOhost |b EBSC |n 329794 | ||
938 | |a YBP Library Services |b YANK |n 3343467 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn656260887 |
---|---|
_version_ | 1816881736337850368 |
adam_text | |
any_adam_object | |
author | Forrester, Peter (Peter John) |
author_GND | http://id.loc.gov/authorities/names/n88611027 |
author_facet | Forrester, Peter (Peter John) |
author_role | |
author_sort | Forrester, Peter |
author_variant | p f pf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .F656 2010eb |
callnumber-search | QA188 .F656 2010eb |
callnumber-sort | QA 3188 F656 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ß = 2; Chapter 6. Correlation functions at ß = 1 and 4; Chapter 7. Scaled limits at ß = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials. Chapter 13. Correlations for general ßChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index. |
ctrlnum | (OCoLC)656260887 |
dewey-full | 512.9434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9434 |
dewey-search | 512.9434 |
dewey-sort | 3512.9434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05328cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn656260887</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">100816s2010 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2009053314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OSU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">650959992</subfield><subfield code="a">657608121</subfield><subfield code="a">706713283</subfield><subfield code="a">961515289</subfield><subfield code="a">962593211</subfield><subfield code="a">988508625</subfield><subfield code="a">992109191</subfield><subfield code="a">994932865</subfield><subfield code="a">1037918586</subfield><subfield code="a">1038643749</subfield><subfield code="a">1045513663</subfield><subfield code="a">1055354506</subfield><subfield code="a">1064235872</subfield><subfield code="a">1153463042</subfield><subfield code="a">1181902912</subfield><subfield code="a">1228605272</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400835416</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400835410</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691128290</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691128294</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612641749</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)656260887</subfield><subfield code="z">(OCoLC)650959992</subfield><subfield code="z">(OCoLC)657608121</subfield><subfield code="z">(OCoLC)706713283</subfield><subfield code="z">(OCoLC)961515289</subfield><subfield code="z">(OCoLC)962593211</subfield><subfield code="z">(OCoLC)988508625</subfield><subfield code="z">(OCoLC)992109191</subfield><subfield code="z">(OCoLC)994932865</subfield><subfield code="z">(OCoLC)1037918586</subfield><subfield code="z">(OCoLC)1038643749</subfield><subfield code="z">(OCoLC)1045513663</subfield><subfield code="z">(OCoLC)1055354506</subfield><subfield code="z">(OCoLC)1064235872</subfield><subfield code="z">(OCoLC)1153463042</subfield><subfield code="z">(OCoLC)1181902912</subfield><subfield code="z">(OCoLC)1228605272</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">264174</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttvjpw</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.F656 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9434</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Forrester, Peter</subfield><subfield code="q">(Peter John)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxWR4yQR3jjXrwHFymGHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88611027</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Log-gases and random matrices /</subfield><subfield code="c">P.J. Forrester.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 791 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society monographs series ;</subfield><subfield code="v">v. 34</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 765-784) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ß = 2; Chapter 6. Correlation functions at ß = 1 and 4; Chapter 7. Scaled limits at ß = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 13. Correlations for general ßChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Random matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh86001920</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Jacobi polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85069211</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Integral theorems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067097</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082139</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices aléatoires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes de Jacobi.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorèmes intégraux.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">applied mathematics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mathematics.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral theorems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jacobi polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Random matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Forrester, Peter (Peter John).</subfield><subfield code="t">Log-gases and random matrices.</subfield><subfield code="d">Princeton : Princeton University Press, ©2010</subfield><subfield code="z">9780691128290</subfield><subfield code="w">(DLC) 2009053314</subfield><subfield code="w">(OCoLC)466341422</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society monographs ;</subfield><subfield code="v">new ser., no. 34.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86741199</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329794</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073768</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">13929212</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL557142</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10397711</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">329794</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3343467</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn656260887 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:27Z |
institution | BVB |
isbn | 9781400835416 1400835410 |
language | English |
oclc_num | 656260887 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 791 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Princeton University Press, |
record_format | marc |
series | London Mathematical Society monographs ; |
series2 | London Mathematical Society monographs series ; |
spelling | Forrester, Peter (Peter John) https://id.oclc.org/worldcat/entity/E39PBJxWR4yQR3jjXrwHFymGHC http://id.loc.gov/authorities/names/n88611027 Log-gases and random matrices / P.J. Forrester. Princeton : Princeton University Press, ©2010. 1 online resource (xiv, 791 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society monographs series ; v. 34 Includes bibliographical references (pages 765-784) and index. Print version record. Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembles and Jack polynomials. Peter Forrester presents an encyclopedic development of log-gases and random matrices viewed as examples of integrable or exactly solvable systems. Forrester develops not only the application and theory of Gaussian and circular ensembles of classical random matrix theory. Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ß = 2; Chapter 6. Correlation functions at ß = 1 and 4; Chapter 7. Scaled limits at ß = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials. Chapter 13. Correlations for general ßChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Jacobi polynomials. http://id.loc.gov/authorities/subjects/sh85069211 Integral theorems. http://id.loc.gov/authorities/subjects/sh85067097 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Matrices aléatoires. Polynômes de Jacobi. Théorèmes intégraux. Mathématiques. applied mathematics. aat mathematics. aat MATHEMATICS Matrices. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Integral theorems fast Jacobi polynomials fast Mathematics fast Random matrices fast Print version: Forrester, Peter (Peter John). Log-gases and random matrices. Princeton : Princeton University Press, ©2010 9780691128290 (DLC) 2009053314 (OCoLC)466341422 London Mathematical Society monographs ; new ser., no. 34. http://id.loc.gov/authorities/names/n86741199 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329794 Volltext |
spellingShingle | Forrester, Peter (Peter John) Log-gases and random matrices / London Mathematical Society monographs ; Cover; Title; Copyright; Preface; Contents; Chapter 1. Gaussian matrix ensembles; Chapter 2. Circular ensembles; Chapter 3. Laguerre and Jacobi ensembles; Chapter 4. The Selberg integral; Chapter 5. Correlation functions at ß = 2; Chapter 6. Correlation functions at ß = 1 and 4; Chapter 7. Scaled limits at ß = 1, 2 and 4; Chapter 8. Eigenvalue probabilities Painlev systems approach; Chapter 9. Eigenvalue probabilities Fredholm determinant approach; Chapter 10. Lattice paths and growth models; Chapter 11. The CalogeroSutherland model; Chapter 12. Jack polynomials. Chapter 13. Correlations for general ßChapter 14. Fluctuation formulas and universal behavior of correlations; Chapter 15. The two-dimensional one-component plasma; Bibliography; Index. Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Jacobi polynomials. http://id.loc.gov/authorities/subjects/sh85069211 Integral theorems. http://id.loc.gov/authorities/subjects/sh85067097 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Matrices aléatoires. Polynômes de Jacobi. Théorèmes intégraux. Mathématiques. applied mathematics. aat mathematics. aat MATHEMATICS Matrices. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Integral theorems fast Jacobi polynomials fast Mathematics fast Random matrices fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh86001920 http://id.loc.gov/authorities/subjects/sh85069211 http://id.loc.gov/authorities/subjects/sh85067097 http://id.loc.gov/authorities/subjects/sh85082139 |
title | Log-gases and random matrices / |
title_auth | Log-gases and random matrices / |
title_exact_search | Log-gases and random matrices / |
title_full | Log-gases and random matrices / P.J. Forrester. |
title_fullStr | Log-gases and random matrices / P.J. Forrester. |
title_full_unstemmed | Log-gases and random matrices / P.J. Forrester. |
title_short | Log-gases and random matrices / |
title_sort | log gases and random matrices |
topic | Random matrices. http://id.loc.gov/authorities/subjects/sh86001920 Jacobi polynomials. http://id.loc.gov/authorities/subjects/sh85069211 Integral theorems. http://id.loc.gov/authorities/subjects/sh85067097 Mathematics. http://id.loc.gov/authorities/subjects/sh85082139 Matrices aléatoires. Polynômes de Jacobi. Théorèmes intégraux. Mathématiques. applied mathematics. aat mathematics. aat MATHEMATICS Matrices. bisacsh MATHEMATICS Probability & Statistics General. bisacsh Integral theorems fast Jacobi polynomials fast Mathematics fast Random matrices fast |
topic_facet | Random matrices. Jacobi polynomials. Integral theorems. Mathematics. Matrices aléatoires. Polynômes de Jacobi. Théorèmes intégraux. Mathématiques. applied mathematics. mathematics. MATHEMATICS Matrices. MATHEMATICS Probability & Statistics General. Integral theorems Jacobi polynomials Mathematics Random matrices |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329794 |
work_keys_str_mv | AT forresterpeter loggasesandrandommatrices |