Introduction to Ramsey spaces /:
Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduc...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2010.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 174. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as. |
Beschreibung: | 1 online resource (vi, 287 pages) : illustrations |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781400835409 1400835402 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn650307489 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 100727s2010 njua ob 001 0 eng d | ||
010 | |a 2009036738 | ||
040 | |a N$T |b eng |e pn |c N$T |d CIT |d YDXCP |d EBLCP |d IDEBK |d OSU |d OCLCQ |d E7B |d CDX |d MHW |d OCLCQ |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d JSTOR |d OCLCF |d OCLCQ |d COO |d AZK |d LOA |d AGLDB |d UIU |d MOR |d PIFAG |d OTZ |d ZCU |d MERUC |d OCLCQ |d JBG |d IOG |d U3W |d EZ9 |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d AJS |d UWK |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCQ |d OCLCL |d NUI |d SXB |d OCLCQ |d OCLCO | ||
015 | |a GBB042460 |2 bnb | ||
016 | 7 | |a 015515652 |2 Uk | |
019 | |a 642912628 |a 649914481 |a 961497920 |a 962628269 |a 1055383045 |a 1066644424 |a 1181904148 |a 1228553101 |a 1358645529 | ||
020 | |a 9781400835409 |q (electronic bk.) | ||
020 | |a 1400835402 |q (electronic bk.) | ||
020 | |z 9780691145419 |q (hardcover ; |q alk. paper) | ||
020 | |z 0691145415 |q (hardcover ; |q alk. paper) | ||
020 | |z 9780691145426 |q (pbk. ; |q alk. paper) | ||
020 | |z 0691145423 |q (pbk. ; |q alk. paper) | ||
024 | 7 | |a 10.1515/9781400835409 |2 doi | |
035 | |a (OCoLC)650307489 |z (OCoLC)642912628 |z (OCoLC)649914481 |z (OCoLC)961497920 |z (OCoLC)962628269 |z (OCoLC)1055383045 |z (OCoLC)1066644424 |z (OCoLC)1181904148 |z (OCoLC)1228553101 |z (OCoLC)1358645529 | ||
037 | |a 22573/cttwp29 |b JSTOR | ||
050 | 4 | |a QA166 |b .T635 2010eb | |
072 | 7 | |a MAT |x 013000 |2 bisacsh | |
072 | 7 | |a MAT028000 |2 bisacsh | |
072 | 7 | |a MAT036000 |2 bisacsh | |
082 | 7 | |a 511/.5 |2 22 | |
084 | |a SI 830 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Todorcevic, Stevo. |1 https://id.oclc.org/worldcat/entity/E39PBJdmmCXDRktFmhpyDJpMfq |0 http://id.loc.gov/authorities/names/n87874475 | |
245 | 1 | 0 | |a Introduction to Ramsey spaces / |c Stevo Todorcevic. |
260 | |a Princeton : |b Princeton University Press, |c 2010. | ||
300 | |a 1 online resource (vi, 287 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 174 | |
504 | |a Includes bibliographical references and indexes. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Introduction; Chapter 1. Ramsey Theory: Preliminaries; Chapter 2. Semigroup Colorings; Chapter 3. Trees and Products; Chapter 4. Abstract Ramsey Theory; Chapter 5. Topological Ramsey Theory; Chapter 6. Spaces of Trees; Chapter 7. Local Ramsey Theory; Chapter 8. Infinite Products of Finite Sets; Chapter 9. Parametrized Ramsey Theory; Appendix; Bibliography; Subject Index; Index of Notation. | |
520 | |a Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as. | ||
588 | 0 | |a Print version record. | |
546 | |a In English. | ||
650 | 0 | |a Ramsey theory. |0 http://id.loc.gov/authorities/subjects/sh85111302 | |
650 | 0 | |a Algebraic spaces. |0 http://id.loc.gov/authorities/subjects/sh85003437 | |
650 | 6 | |a Théorie de Ramsey. | |
650 | 6 | |a Espaces algébriques. | |
650 | 7 | |a MATHEMATICS |x Graphic Methods. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Set Theory. |2 bisacsh | |
650 | 7 | |a Algebraic spaces |2 fast | |
650 | 7 | |a Ramsey theory |2 fast | |
653 | |a Analytic set. | ||
653 | |a Axiom of choice. | ||
653 | |a Baire category theorem. | ||
653 | |a Baire space. | ||
653 | |a Banach space. | ||
653 | |a Bijection. | ||
653 | |a Binary relation. | ||
653 | |a Boolean prime ideal theorem. | ||
653 | |a Borel equivalence relation. | ||
653 | |a Borel measure. | ||
653 | |a Borel set. | ||
653 | |a C0. | ||
653 | |a Cantor cube. | ||
653 | |a Cantor set. | ||
653 | |a Cantor space. | ||
653 | |a Cardinality. | ||
653 | |a Characteristic function (probability theory). | ||
653 | |a Characterization (mathematics). | ||
653 | |a Combinatorics. | ||
653 | |a Compact space. | ||
653 | |a Compactification (mathematics). | ||
653 | |a Complete metric space. | ||
653 | |a Completely metrizable space. | ||
653 | |a Constructible universe. | ||
653 | |a Continuous function (set theory). | ||
653 | |a Continuous function. | ||
653 | |a Corollary. | ||
653 | |a Countable set. | ||
653 | |a Counterexample. | ||
653 | |a Decision problem. | ||
653 | |a Dense set. | ||
653 | |a Diagonalization. | ||
653 | |a Dimension (vector space). | ||
653 | |a Dimension. | ||
653 | |a Discrete space. | ||
653 | |a Disjoint sets. | ||
653 | |a Dual space. | ||
653 | |a Embedding. | ||
653 | |a Equation. | ||
653 | |a Equivalence relation. | ||
653 | |a Existential quantification. | ||
653 | |a Family of sets. | ||
653 | |a Forcing (mathematics). | ||
653 | |a Forcing (recursion theory). | ||
653 | |a Gap theorem. | ||
653 | |a Geometry. | ||
653 | |a Ideal (ring theory). | ||
653 | |a Infinite product. | ||
653 | |a Lebesgue measure. | ||
653 | |a Limit point. | ||
653 | |a Lipschitz continuity. | ||
653 | |a Mathematical induction. | ||
653 | |a Mathematical problem. | ||
653 | |a Mathematics. | ||
653 | |a Metric space. | ||
653 | |a Metrization theorem. | ||
653 | |a Monotonic function. | ||
653 | |a Natural number. | ||
653 | |a Natural topology. | ||
653 | |a Neighbourhood (mathematics). | ||
653 | |a Null set. | ||
653 | |a Open set. | ||
653 | |a Order type. | ||
653 | |a Partial function. | ||
653 | |a Partially ordered set. | ||
653 | |a Peano axioms. | ||
653 | |a Point at infinity. | ||
653 | |a Pointwise. | ||
653 | |a Polish space. | ||
653 | |a Probability measure. | ||
653 | |a Product measure. | ||
653 | |a Product topology. | ||
653 | |a Property of Baire. | ||
653 | |a Ramsey theory. | ||
653 | |a Ramsey's theorem. | ||
653 | |a Right inverse. | ||
653 | |a Scalar multiplication. | ||
653 | |a Schauder basis. | ||
653 | |a Semigroup. | ||
653 | |a Sequence. | ||
653 | |a Sequential space. | ||
653 | |a Set (mathematics). | ||
653 | |a Set theory. | ||
653 | |a Sperner family. | ||
653 | |a Subsequence. | ||
653 | |a Subset. | ||
653 | |a Subspace topology. | ||
653 | |a Support function. | ||
653 | |a Symmetric difference. | ||
653 | |a Theorem. | ||
653 | |a Topological dynamics. | ||
653 | |a Topological group. | ||
653 | |a Topological space. | ||
653 | |a Topology. | ||
653 | |a Tree (data structure). | ||
653 | |a Unit interval. | ||
653 | |a Unit sphere. | ||
653 | |a Variable (mathematics). | ||
653 | |a Well-order. | ||
653 | |a Zorn's lemma. | ||
758 | |i has work: |a Introduction to Ramsey spaces (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG6gKFGrxRgFCFFXCtjJMq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Todorcevic, Stevo. |t Introduction to Ramsey spaces. |d Princeton : Princeton University Press, 2010 |z 9780691145426 |w (DLC) 2009036738 |w (OCoLC)437054050 |
830 | 0 | |a Annals of mathematics studies ; |v no. 174. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329854 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073751 | ||
938 | |a Coutts Information Services |b COUT |n 13929495 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL557161 | ||
938 | |a ebrary |b EBRY |n ebr10395877 | ||
938 | |a EBSCOhost |b EBSC |n 329854 | ||
938 | |a YBP Library Services |b YANK |n 3252473 | ||
938 | |a Internet Archive |b INAR |n introductiontora0000todo | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn650307489 |
---|---|
_version_ | 1816881731924393984 |
adam_text | |
any_adam_object | |
author | Todorcevic, Stevo |
author_GND | http://id.loc.gov/authorities/names/n87874475 |
author_facet | Todorcevic, Stevo |
author_role | |
author_sort | Todorcevic, Stevo |
author_variant | s t st |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA166 |
callnumber-raw | QA166 .T635 2010eb |
callnumber-search | QA166 .T635 2010eb |
callnumber-sort | QA 3166 T635 42010EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Introduction; Chapter 1. Ramsey Theory: Preliminaries; Chapter 2. Semigroup Colorings; Chapter 3. Trees and Products; Chapter 4. Abstract Ramsey Theory; Chapter 5. Topological Ramsey Theory; Chapter 6. Spaces of Trees; Chapter 7. Local Ramsey Theory; Chapter 8. Infinite Products of Finite Sets; Chapter 9. Parametrized Ramsey Theory; Appendix; Bibliography; Subject Index; Index of Notation. |
ctrlnum | (OCoLC)650307489 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08103cam a2201945 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn650307489</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">100727s2010 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2009036738</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CIT</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">CDX</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB042460</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015515652</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">642912628</subfield><subfield code="a">649914481</subfield><subfield code="a">961497920</subfield><subfield code="a">962628269</subfield><subfield code="a">1055383045</subfield><subfield code="a">1066644424</subfield><subfield code="a">1181904148</subfield><subfield code="a">1228553101</subfield><subfield code="a">1358645529</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400835409</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400835402</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691145419</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691145415</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691145426</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691145423</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400835409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)650307489</subfield><subfield code="z">(OCoLC)642912628</subfield><subfield code="z">(OCoLC)649914481</subfield><subfield code="z">(OCoLC)961497920</subfield><subfield code="z">(OCoLC)962628269</subfield><subfield code="z">(OCoLC)1055383045</subfield><subfield code="z">(OCoLC)1066644424</subfield><subfield code="z">(OCoLC)1181904148</subfield><subfield code="z">(OCoLC)1228553101</subfield><subfield code="z">(OCoLC)1358645529</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttwp29</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA166</subfield><subfield code="b">.T635 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT028000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Todorcevic, Stevo.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdmmCXDRktFmhpyDJpMfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87874475</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Ramsey spaces /</subfield><subfield code="c">Stevo Todorcevic.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 287 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 174</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Introduction; Chapter 1. Ramsey Theory: Preliminaries; Chapter 2. Semigroup Colorings; Chapter 3. Trees and Products; Chapter 4. Abstract Ramsey Theory; Chapter 5. Topological Ramsey Theory; Chapter 6. Spaces of Trees; Chapter 7. Local Ramsey Theory; Chapter 8. Infinite Products of Finite Sets; Chapter 9. Parametrized Ramsey Theory; Appendix; Bibliography; Subject Index; Index of Notation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ramsey theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85111302</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003437</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de Ramsey.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces algébriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Graphic Methods.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Set Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ramsey theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Axiom of choice.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Baire category theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Baire space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bijection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Binary relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Boolean prime ideal theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Borel equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Borel measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Borel set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">C0.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cantor cube.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cantor set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cantor space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cardinality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characteristic function (probability theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characterization (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Combinatorics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compact space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compactification (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complete metric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Completely metrizable space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Constructible universe.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function (set theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Corollary.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Countable set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Counterexample.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Decision problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dense set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagonalization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Discrete space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Disjoint sets.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dual space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Embedding.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Family of sets.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Forcing (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Forcing (recursion theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gap theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ideal (ring theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infinite product.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lebesgue measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Limit point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lipschitz continuity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical induction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Metric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Metrization theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monotonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Natural number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Natural topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Neighbourhood (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Null set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Order type.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partially ordered set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Peano axioms.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Point at infinity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pointwise.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polish space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Product measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Product topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Property of Baire.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ramsey theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ramsey's theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Right inverse.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scalar multiplication.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Schauder basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Semigroup.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sequential space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Set (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Set theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sperner family.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subsequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subset.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subspace topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Support function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Symmetric difference.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topological dynamics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topological group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topological space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tree (data structure).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit interval.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Well-order.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zorn's lemma.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Introduction to Ramsey spaces (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG6gKFGrxRgFCFFXCtjJMq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Todorcevic, Stevo.</subfield><subfield code="t">Introduction to Ramsey spaces.</subfield><subfield code="d">Princeton : Princeton University Press, 2010</subfield><subfield code="z">9780691145426</subfield><subfield code="w">(DLC) 2009036738</subfield><subfield code="w">(OCoLC)437054050</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 174.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329854</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073751</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">13929495</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL557161</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10395877</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">329854</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3252473</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">introductiontora0000todo</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn650307489 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:23Z |
institution | BVB |
isbn | 9781400835409 1400835402 |
language | English |
lccn | 2009036738 |
oclc_num | 650307489 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 287 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Todorcevic, Stevo. https://id.oclc.org/worldcat/entity/E39PBJdmmCXDRktFmhpyDJpMfq http://id.loc.gov/authorities/names/n87874475 Introduction to Ramsey spaces / Stevo Todorcevic. Princeton : Princeton University Press, 2010. 1 online resource (vi, 287 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 174 Includes bibliographical references and indexes. Cover; Title; Copyright; Contents; Introduction; Chapter 1. Ramsey Theory: Preliminaries; Chapter 2. Semigroup Colorings; Chapter 3. Trees and Products; Chapter 4. Abstract Ramsey Theory; Chapter 5. Topological Ramsey Theory; Chapter 6. Spaces of Trees; Chapter 7. Local Ramsey Theory; Chapter 8. Infinite Products of Finite Sets; Chapter 9. Parametrized Ramsey Theory; Appendix; Bibliography; Subject Index; Index of Notation. Ramsey theory is a fast-growing area of combinatorics with deep connections to other fields of mathematics such as topological dynamics, ergodic theory, mathematical logic, and algebra. The area of Ramsey theory dealing with Ramsey-type phenomena in higher dimensions is particularly useful. Introduction to Ramsey Spaces presents in a systematic way a method for building higher-dimensional Ramsey spaces from basic one-dimensional principles. It is the first book-length treatment of this area of Ramsey theory, and emphasizes applications for related and surrounding fields of mathematics, such as. Print version record. In English. Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Théorie de Ramsey. Espaces algébriques. MATHEMATICS Graphic Methods. bisacsh MATHEMATICS Set Theory. bisacsh Algebraic spaces fast Ramsey theory fast Analytic set. Axiom of choice. Baire category theorem. Baire space. Banach space. Bijection. Binary relation. Boolean prime ideal theorem. Borel equivalence relation. Borel measure. Borel set. C0. Cantor cube. Cantor set. Cantor space. Cardinality. Characteristic function (probability theory). Characterization (mathematics). Combinatorics. Compact space. Compactification (mathematics). Complete metric space. Completely metrizable space. Constructible universe. Continuous function (set theory). Continuous function. Corollary. Countable set. Counterexample. Decision problem. Dense set. Diagonalization. Dimension (vector space). Dimension. Discrete space. Disjoint sets. Dual space. Embedding. Equation. Equivalence relation. Existential quantification. Family of sets. Forcing (mathematics). Forcing (recursion theory). Gap theorem. Geometry. Ideal (ring theory). Infinite product. Lebesgue measure. Limit point. Lipschitz continuity. Mathematical induction. Mathematical problem. Mathematics. Metric space. Metrization theorem. Monotonic function. Natural number. Natural topology. Neighbourhood (mathematics). Null set. Open set. Order type. Partial function. Partially ordered set. Peano axioms. Point at infinity. Pointwise. Polish space. Probability measure. Product measure. Product topology. Property of Baire. Ramsey theory. Ramsey's theorem. Right inverse. Scalar multiplication. Schauder basis. Semigroup. Sequence. Sequential space. Set (mathematics). Set theory. Sperner family. Subsequence. Subset. Subspace topology. Support function. Symmetric difference. Theorem. Topological dynamics. Topological group. Topological space. Topology. Tree (data structure). Unit interval. Unit sphere. Variable (mathematics). Well-order. Zorn's lemma. has work: Introduction to Ramsey spaces (Text) https://id.oclc.org/worldcat/entity/E39PCG6gKFGrxRgFCFFXCtjJMq https://id.oclc.org/worldcat/ontology/hasWork Print version: Todorcevic, Stevo. Introduction to Ramsey spaces. Princeton : Princeton University Press, 2010 9780691145426 (DLC) 2009036738 (OCoLC)437054050 Annals of mathematics studies ; no. 174. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329854 Volltext |
spellingShingle | Todorcevic, Stevo Introduction to Ramsey spaces / Annals of mathematics studies ; Cover; Title; Copyright; Contents; Introduction; Chapter 1. Ramsey Theory: Preliminaries; Chapter 2. Semigroup Colorings; Chapter 3. Trees and Products; Chapter 4. Abstract Ramsey Theory; Chapter 5. Topological Ramsey Theory; Chapter 6. Spaces of Trees; Chapter 7. Local Ramsey Theory; Chapter 8. Infinite Products of Finite Sets; Chapter 9. Parametrized Ramsey Theory; Appendix; Bibliography; Subject Index; Index of Notation. Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Théorie de Ramsey. Espaces algébriques. MATHEMATICS Graphic Methods. bisacsh MATHEMATICS Set Theory. bisacsh Algebraic spaces fast Ramsey theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85111302 http://id.loc.gov/authorities/subjects/sh85003437 |
title | Introduction to Ramsey spaces / |
title_auth | Introduction to Ramsey spaces / |
title_exact_search | Introduction to Ramsey spaces / |
title_full | Introduction to Ramsey spaces / Stevo Todorcevic. |
title_fullStr | Introduction to Ramsey spaces / Stevo Todorcevic. |
title_full_unstemmed | Introduction to Ramsey spaces / Stevo Todorcevic. |
title_short | Introduction to Ramsey spaces / |
title_sort | introduction to ramsey spaces |
topic | Ramsey theory. http://id.loc.gov/authorities/subjects/sh85111302 Algebraic spaces. http://id.loc.gov/authorities/subjects/sh85003437 Théorie de Ramsey. Espaces algébriques. MATHEMATICS Graphic Methods. bisacsh MATHEMATICS Set Theory. bisacsh Algebraic spaces fast Ramsey theory fast |
topic_facet | Ramsey theory. Algebraic spaces. Théorie de Ramsey. Espaces algébriques. MATHEMATICS Graphic Methods. MATHEMATICS Set Theory. Algebraic spaces Ramsey theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=329854 |
work_keys_str_mv | AT todorcevicstevo introductiontoramseyspaces |