Low-dimensional nanoscale systems on discrete spaces /:
The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are p...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Singapore ; Hackensack, NJ :
World Scientific,
©2007.
|
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo. |
Physical Description: | 1 online resource (xiii, 262 pages) : illustrations |
Bibliography: | Includes bibliographical references (pages 241-257) and index. |
ISBN: | 9789812770615 9812770615 1281121738 9781281121738 |
Staff View
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn648316852 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070608s2007 si a ob 001 0 eng d | ||
010 | |a 2007300078 | ||
040 | |a E7B |b eng |e pn |c E7B |d OKU |d OCLCQ |d N$T |d YDXCP |d IDEBK |d OCLCQ |d STF |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d OCLCQ |d EBLCP |d MHW |d DEBSZ |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d LEAUB |d UKCRE |d AJS |d OCLCO |d OCLCQ |d OCLCO |d SXB |d OCLCQ |d CLOUD | ||
019 | |a 173485480 |a 174052601 |a 476099822 |a 518439668 |a 815542727 |a 935264144 |a 961538333 |a 962663081 |a 988520112 |a 991991002 |a 1037781453 |a 1038569605 |a 1055346668 |a 1062868054 |a 1081289872 |a 1086558724 |a 1153510148 |a 1228566220 | ||
020 | |a 9789812770615 |q (electronic bk.) | ||
020 | |a 9812770615 |q (electronic bk.) | ||
020 | |a 1281121738 | ||
020 | |a 9781281121738 | ||
020 | |z 9812706380 | ||
020 | |z 9789812706386 | ||
035 | |a (OCoLC)648316852 |z (OCoLC)173485480 |z (OCoLC)174052601 |z (OCoLC)476099822 |z (OCoLC)518439668 |z (OCoLC)815542727 |z (OCoLC)935264144 |z (OCoLC)961538333 |z (OCoLC)962663081 |z (OCoLC)988520112 |z (OCoLC)991991002 |z (OCoLC)1037781453 |z (OCoLC)1038569605 |z (OCoLC)1055346668 |z (OCoLC)1062868054 |z (OCoLC)1081289872 |z (OCoLC)1086558724 |z (OCoLC)1153510148 |z (OCoLC)1228566220 | ||
050 | 4 | |a QC174.12 |b .P36 2007eb | |
072 | 7 | |a SCI |x 057000 |2 bisacsh | |
072 | 7 | |a PHFC |2 bicssc | |
082 | 7 | |a 530.12 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Papp, E. | |
245 | 1 | 0 | |a Low-dimensional nanoscale systems on discrete spaces / |c Erhardt Papp, Codrutza Micu. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xiii, 262 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
504 | |a Includes bibliographical references (pages 241-257) and index. | ||
505 | 0 | |a Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions. | |
588 | 0 | |a Print version record. | |
520 | |a The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo. | ||
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Schrödinger equation. |0 http://id.loc.gov/authorities/subjects/sh85118495 | |
650 | 0 | |a Nanoelectromechanical systems. |0 http://id.loc.gov/authorities/subjects/sh2006008121 | |
650 | 2 | |a Quantum Theory |0 https://id.nlm.nih.gov/mesh/D011789 | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Équation de Schrödinger. | |
650 | 6 | |a Nanosystèmes électromécaniques. | |
650 | 7 | |a SCIENCE |x Physics |x Quantum Theory. |2 bisacsh | |
650 | 7 | |a Nanoelectromechanical systems |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Schrödinger equation |2 fast | |
655 | 0 | |a Electronic books. | |
700 | 1 | |a Micu, Codrutza. | |
776 | 0 | 8 | |i Print version: |a Papp, E. |t Low-dimensional nanoscale systems on discrete spaces. |d Hackensack, NJ ; Singapore : World Scientific, ©2007 |z 9812706380 |z 9789812706386 |w (OCoLC)141384808 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203916 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203916 |3 Volltext |
938 | |a cloudLibrary |b CLDL |n 9789812770615 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684268 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL312345 | ||
938 | |a ebrary |b EBRY |n ebr10188748 | ||
938 | |a EBSCOhost |b EBSC |n 203916 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 112173 | ||
938 | |a YBP Library Services |b YANK |n 2706242 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn648316852 |
---|---|
_version_ | 1829094671963389952 |
adam_text | |
any_adam_object | |
author | Papp, E. |
author2 | Micu, Codrutza |
author2_role | |
author2_variant | c m cm |
author_facet | Papp, E. Micu, Codrutza |
author_role | |
author_sort | Papp, E. |
author_variant | e p ep |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.12 .P36 2007eb |
callnumber-search | QC174.12 .P36 2007eb |
callnumber-sort | QC 3174.12 P36 42007EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions. |
ctrlnum | (OCoLC)648316852 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04698cam a2200697Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn648316852</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070608s2007 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2007300078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OKU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CLOUD</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">173485480</subfield><subfield code="a">174052601</subfield><subfield code="a">476099822</subfield><subfield code="a">518439668</subfield><subfield code="a">815542727</subfield><subfield code="a">935264144</subfield><subfield code="a">961538333</subfield><subfield code="a">962663081</subfield><subfield code="a">988520112</subfield><subfield code="a">991991002</subfield><subfield code="a">1037781453</subfield><subfield code="a">1038569605</subfield><subfield code="a">1055346668</subfield><subfield code="a">1062868054</subfield><subfield code="a">1081289872</subfield><subfield code="a">1086558724</subfield><subfield code="a">1153510148</subfield><subfield code="a">1228566220</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770615</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770615</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281121738</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281121738</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812706380</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812706386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)648316852</subfield><subfield code="z">(OCoLC)173485480</subfield><subfield code="z">(OCoLC)174052601</subfield><subfield code="z">(OCoLC)476099822</subfield><subfield code="z">(OCoLC)518439668</subfield><subfield code="z">(OCoLC)815542727</subfield><subfield code="z">(OCoLC)935264144</subfield><subfield code="z">(OCoLC)961538333</subfield><subfield code="z">(OCoLC)962663081</subfield><subfield code="z">(OCoLC)988520112</subfield><subfield code="z">(OCoLC)991991002</subfield><subfield code="z">(OCoLC)1037781453</subfield><subfield code="z">(OCoLC)1038569605</subfield><subfield code="z">(OCoLC)1055346668</subfield><subfield code="z">(OCoLC)1062868054</subfield><subfield code="z">(OCoLC)1081289872</subfield><subfield code="z">(OCoLC)1086558724</subfield><subfield code="z">(OCoLC)1153510148</subfield><subfield code="z">(OCoLC)1228566220</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.12</subfield><subfield code="b">.P36 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">057000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHFC</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Papp, E.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-dimensional nanoscale systems on discrete spaces /</subfield><subfield code="c">Erhardt Papp, Codrutza Micu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 262 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 241-257) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Schrödinger equation.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85118495</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanoelectromechanical systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2006008121</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Quantum Theory</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D011789</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équation de Schrödinger.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanosystèmes électromécaniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Quantum Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanoelectromechanical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schrödinger equation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micu, Codrutza.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Papp, E.</subfield><subfield code="t">Low-dimensional nanoscale systems on discrete spaces.</subfield><subfield code="d">Hackensack, NJ ; Singapore : World Scientific, ©2007</subfield><subfield code="z">9812706380</subfield><subfield code="z">9789812706386</subfield><subfield code="w">(OCoLC)141384808</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203916</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=203916</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">cloudLibrary</subfield><subfield code="b">CLDL</subfield><subfield code="n">9789812770615</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684268</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL312345</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10188748</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">203916</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">112173</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2706242</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn648316852 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:36:50Z |
institution | BVB |
isbn | 9789812770615 9812770615 1281121738 9781281121738 |
language | English |
lccn | 2007300078 |
oclc_num | 648316852 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 262 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
spelling | Papp, E. Low-dimensional nanoscale systems on discrete spaces / Erhardt Papp, Codrutza Micu. Singapore ; Hackensack, NJ : World Scientific, ©2007. 1 online resource (xiii, 262 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Includes bibliographical references (pages 241-257) and index. Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions. Print version record. The area of low-dimensional quantum systems on discrete spaces is a rapidly growing research field lying at the interface between quantum theoretical developments, like discrete and q-difference equations, and tight binding superlattice models in solid-state physics. Systems on discrete spaces are promising candidates for applications in several areas. Indeed, the dynamic localization of electrons on the 1D lattice under the influence of an external electric field serves to describe time-dependent transport in quantum wires, linear optical absorption spectra, and the generation of higher harmo. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Équation de Schrödinger. Nanosystèmes électromécaniques. SCIENCE Physics Quantum Theory. bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast Electronic books. Micu, Codrutza. Print version: Papp, E. Low-dimensional nanoscale systems on discrete spaces. Hackensack, NJ ; Singapore : World Scientific, ©2007 9812706380 9789812706386 (OCoLC)141384808 |
spellingShingle | Papp, E. Low-dimensional nanoscale systems on discrete spaces / Lattice structures and discretizations -- Periodic quasiperiodic and confinement potentials -- Time discretization schemes -- Discrete Schr·odinger equations. Typical examples -- Discrete analogs and lie-algebraic discretizations. Realizations of Heisenberg-Weyl algebras -- Hopping Hamiltonians. Electrons in electric field -- Tight binding descriptions in the presence of the magnetic field -- The Harper-Equation and electrons on the 1D ring -- The q-symmetrized Harper equation -- Quantum oscillations and interference effects in nanodevices -- Conclusions. Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Équation de Schrödinger. Nanosystèmes électromécaniques. SCIENCE Physics Quantum Theory. bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85109469 http://id.loc.gov/authorities/subjects/sh85118495 http://id.loc.gov/authorities/subjects/sh2006008121 https://id.nlm.nih.gov/mesh/D011789 |
title | Low-dimensional nanoscale systems on discrete spaces / |
title_auth | Low-dimensional nanoscale systems on discrete spaces / |
title_exact_search | Low-dimensional nanoscale systems on discrete spaces / |
title_full | Low-dimensional nanoscale systems on discrete spaces / Erhardt Papp, Codrutza Micu. |
title_fullStr | Low-dimensional nanoscale systems on discrete spaces / Erhardt Papp, Codrutza Micu. |
title_full_unstemmed | Low-dimensional nanoscale systems on discrete spaces / Erhardt Papp, Codrutza Micu. |
title_short | Low-dimensional nanoscale systems on discrete spaces / |
title_sort | low dimensional nanoscale systems on discrete spaces |
topic | Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Schrödinger equation. http://id.loc.gov/authorities/subjects/sh85118495 Nanoelectromechanical systems. http://id.loc.gov/authorities/subjects/sh2006008121 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Théorie quantique. Équation de Schrödinger. Nanosystèmes électromécaniques. SCIENCE Physics Quantum Theory. bisacsh Nanoelectromechanical systems fast Quantum theory fast Schrödinger equation fast |
topic_facet | Quantum theory. Schrödinger equation. Nanoelectromechanical systems. Quantum Theory Théorie quantique. Équation de Schrödinger. Nanosystèmes électromécaniques. SCIENCE Physics Quantum Theory. Nanoelectromechanical systems Quantum theory Schrödinger equation Electronic books. |
work_keys_str_mv | AT pappe lowdimensionalnanoscalesystemsondiscretespaces AT micucodrutza lowdimensionalnanoscalesystemsondiscretespaces |