The structure of affine buildings /:
In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It als...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2009.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 168. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas. |
Beschreibung: | 1 online resource (x, 368 pages) : illustrations |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400829057 1400829054 1282458361 9781282458369 9786612458361 6612458364 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn647843271 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 080410s2009 njua ob 001 0 eng d | ||
010 | |z 2008062106 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d OSU |d EBLCP |d IDEBK |d OCLCQ |d MHW |d OCLCQ |d CDX |d FVL |d OCLCE |d OCLCQ |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d JSTOR |d OCLCF |d OCLCQ |d COO |d AZK |d UIU |d AGLDB |d MOR |d OCLCO |d JBG |d PIFAG |d ZCU |d OTZ |d OCLCQ |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d ICG |d NRAMU |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d CEF |d UX1 |d OCLCQ |d HS0 |d UWK |d ADU |d OCLCQ |d UKCRE |d VLB |d MM9 |d AJS |d OCLCQ |d CNNOR |d OCLCO |d XND |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI |d INARC |d VJV | ||
015 | |a GBA8B4411 |2 bnb | ||
016 | 7 | |a 014765713 |2 Uk | |
019 | |a 557402428 |a 587078441 |a 593215075 |a 698019114 |a 722735807 |a 728058811 |a 760158053 |a 767060583 |a 769365366 |a 812216908 |a 961555185 |a 962611499 |a 974574963 |a 974618746 |a 988408305 |a 992088113 |a 995021287 |a 1018030015 |a 1037925482 |a 1041777890 |a 1045530380 |a 1048328661 |a 1052562647 |a 1053446883 |a 1055364710 |a 1058110232 |a 1064148257 |a 1064946576 |a 1077244684 |a 1096429727 |a 1100702327 |a 1101725342 |a 1109314178 |a 1110266303 |a 1113178440 |a 1119077160 |a 1153454420 |a 1157949713 |a 1162465353 |a 1178722509 |a 1181910437 |a 1183977526 |a 1228620142 |a 1249169610 |a 1257342243 |a 1258401974 |a 1297040412 |a 1297877697 |a 1342129206 |a 1375501519 | ||
020 | |a 9781400829057 |q (electronic bk.) | ||
020 | |a 1400829054 |q (electronic bk.) | ||
020 | |a 1282458361 | ||
020 | |a 9781282458369 | ||
020 | |a 9786612458361 | ||
020 | |a 6612458364 | ||
020 | |z 9780691136592 |q (cloth ; |q acid-free paper) | ||
020 | |z 9780691138817 |q (pbk. ; |q acid-free paper) | ||
020 | |z 0691136599 |q (cloth ; |q acid-free paper) | ||
020 | |z 0691138818 |q (paper ; |q acid-free paper) | ||
024 | 7 | |a 10.1515/9781400829057 |2 doi | |
035 | |a (OCoLC)647843271 |z (OCoLC)557402428 |z (OCoLC)587078441 |z (OCoLC)593215075 |z (OCoLC)698019114 |z (OCoLC)722735807 |z (OCoLC)728058811 |z (OCoLC)760158053 |z (OCoLC)767060583 |z (OCoLC)769365366 |z (OCoLC)812216908 |z (OCoLC)961555185 |z (OCoLC)962611499 |z (OCoLC)974574963 |z (OCoLC)974618746 |z (OCoLC)988408305 |z (OCoLC)992088113 |z (OCoLC)995021287 |z (OCoLC)1018030015 |z (OCoLC)1037925482 |z (OCoLC)1041777890 |z (OCoLC)1045530380 |z (OCoLC)1048328661 |z (OCoLC)1052562647 |z (OCoLC)1053446883 |z (OCoLC)1055364710 |z (OCoLC)1058110232 |z (OCoLC)1064148257 |z (OCoLC)1064946576 |z (OCoLC)1077244684 |z (OCoLC)1096429727 |z (OCoLC)1100702327 |z (OCoLC)1101725342 |z (OCoLC)1109314178 |z (OCoLC)1110266303 |z (OCoLC)1113178440 |z (OCoLC)1119077160 |z (OCoLC)1153454420 |z (OCoLC)1157949713 |z (OCoLC)1162465353 |z (OCoLC)1178722509 |z (OCoLC)1181910437 |z (OCoLC)1183977526 |z (OCoLC)1228620142 |z (OCoLC)1249169610 |z (OCoLC)1257342243 |z (OCoLC)1258401974 |z (OCoLC)1297040412 |z (OCoLC)1297877697 |z (OCoLC)1342129206 |z (OCoLC)1375501519 | ||
037 | |a 245836 |b MIL | ||
037 | |a 22573/cttv0w9 |b JSTOR | ||
042 | |a dlr | ||
050 | 4 | |a QA174.2 |b .W454 2009eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a SI 830 |2 rvk | ||
084 | |a SK 260 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Weiss, Richard M. |q (Richard Mark), |d 1946- |1 https://id.oclc.org/worldcat/entity/E39PCjB9DGd6J6WXBcmT8gGTBK |0 http://id.loc.gov/authorities/names/n2002160703 | |
245 | 1 | 4 | |a The structure of affine buildings / |c Richard M. Weiss. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2009. | ||
300 | |a 1 online resource (x, 368 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 168 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface; Chapter 1. Affine Coxeter Diagrams; Chapter 2. Root Systems; Chapter 3. Root Data with Valuation; Chapter 4. Sectors; Chapter 5. Faces; Chapter 6. Gems; Chapter 7. Affine Buildings; Chapter 8. The Building at Infinity; Chapter 9. Trees with Valuation; Chapter 10. Wall Trees; Chapter 11. Panel Trees; Chapter 12. Tree-Preserving Isomorphisms; Chapter 13. The Moufang Property at Infinity; Chapter 14. Existence; Chapter 15. Partial Valuations; Chapter 16. Bruhat-Tits Theory; Chapter 17. Completions; Chapter 18. Automorphisms and Residues. | |
520 | |a In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2011. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2011 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
546 | |a In English. | ||
650 | 0 | |a Buildings (Group theory) |0 http://id.loc.gov/authorities/subjects/sh88005178 | |
650 | 0 | |a Moufang loops. |0 http://id.loc.gov/authorities/subjects/sh85087706 | |
650 | 0 | |a Automorphisms. |0 http://id.loc.gov/authorities/subjects/sh85010452 | |
650 | 0 | |a Affine algebraic groups. |0 http://id.loc.gov/authorities/subjects/sh96011312 | |
650 | 6 | |a Immeubles (Théorie des groupes) | |
650 | 6 | |a Moufang, Boucles de. | |
650 | 6 | |a Automorphismes. | |
650 | 6 | |a Groupes algébriques affines. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Affine algebraic groups |2 fast | |
650 | 7 | |a Automorphisms |2 fast | |
650 | 7 | |a Buildings (Group theory) |2 fast | |
650 | 7 | |a Moufang loops |2 fast | |
650 | 7 | |a Affines Gebäude |2 gnd |0 http://d-nb.info/gnd/4225935-6 | |
650 | 7 | |a Bruhat-Tits-Gebäude |2 gnd |0 http://d-nb.info/gnd/4398248-7 | |
650 | 7 | |a Moufang-Loop |2 gnd |0 http://d-nb.info/gnd/4440400-1 | |
653 | |a Addition. | ||
653 | |a Additive group. | ||
653 | |a Additive inverse. | ||
653 | |a Algebraic group. | ||
653 | |a Algebraic structure. | ||
653 | |a Ambient space. | ||
653 | |a Associative property. | ||
653 | |a Automorphism. | ||
653 | |a Big O notation. | ||
653 | |a Bijection. | ||
653 | |a Bilinear form. | ||
653 | |a Bounded set (topological vector space). | ||
653 | |a Bounded set. | ||
653 | |a Calculation. | ||
653 | |a Cardinality. | ||
653 | |a Cauchy sequence. | ||
653 | |a Commutative property. | ||
653 | |a Complete graph. | ||
653 | |a Complete metric space. | ||
653 | |a Composition algebra. | ||
653 | |a Connected component (graph theory). | ||
653 | |a Consistency. | ||
653 | |a Continuous function. | ||
653 | |a Coordinate system. | ||
653 | |a Corollary. | ||
653 | |a Coxeter group. | ||
653 | |a Coxeter-Dynkin diagram. | ||
653 | |a Diagram (category theory). | ||
653 | |a Diameter. | ||
653 | |a Dimension. | ||
653 | |a Discrete valuation. | ||
653 | |a Division algebra. | ||
653 | |a Dot product. | ||
653 | |a Dynkin diagram. | ||
653 | |a E6 (mathematics). | ||
653 | |a E7 (mathematics). | ||
653 | |a E8 (mathematics). | ||
653 | |a Empty set. | ||
653 | |a Equipollence (geometry). | ||
653 | |a Equivalence class. | ||
653 | |a Equivalence relation. | ||
653 | |a Euclidean geometry. | ||
653 | |a Euclidean space. | ||
653 | |a Existential quantification. | ||
653 | |a Free monoid. | ||
653 | |a Fundamental domain. | ||
653 | |a Hyperplane. | ||
653 | |a Infimum and supremum. | ||
653 | |a Jacques Tits. | ||
653 | |a K0. | ||
653 | |a Linear combination. | ||
653 | |a Mathematical induction. | ||
653 | |a Metric space. | ||
653 | |a Multiple edges. | ||
653 | |a Multiplicative inverse. | ||
653 | |a Number theory. | ||
653 | |a Octonion. | ||
653 | |a Parameter. | ||
653 | |a Permutation group. | ||
653 | |a Permutation. | ||
653 | |a Pointwise. | ||
653 | |a Polygon. | ||
653 | |a Projective line. | ||
653 | |a Quadratic form. | ||
653 | |a Quaternion. | ||
653 | |a Remainder. | ||
653 | |a Root datum. | ||
653 | |a Root system. | ||
653 | |a Scientific notation. | ||
653 | |a Sphere. | ||
653 | |a Subgroup. | ||
653 | |a Subring. | ||
653 | |a Subset. | ||
653 | |a Substructure. | ||
653 | |a Theorem. | ||
653 | |a Topology of uniform convergence. | ||
653 | |a Topology. | ||
653 | |a Torus. | ||
653 | |a Tree (data structure). | ||
653 | |a Tree structure. | ||
653 | |a Two-dimensional space. | ||
653 | |a Uniform continuity. | ||
653 | |a Valuation (algebra). | ||
653 | |a Vector space. | ||
653 | |a Without loss of generality. | ||
758 | |i has work: |a The structure of affine buildings (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGMckB8fPFRYcmrcrJwJMq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
773 | 0 | |t Academic Search Complete |d EBSCO | |
776 | 0 | 8 | |i Print version: |a Weiss, Richard M. (Richard Mark), 1946- |t Structure of affine buildings. |d Princeton, N.J. : Princeton University Press, ©2009 |w (DLC) 2008062106 |
830 | 0 | |a Annals of mathematics studies ; |v no. 168. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305786 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073584 | ||
938 | |a Coutts Information Services |b COUT |n 12123249 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL483594 | ||
938 | |a ebrary |b EBRY |n ebr10359253 | ||
938 | |a EBSCOhost |b EBSC |n 305786 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 245836 | ||
938 | |a YBP Library Services |b YANK |n 3157739 | ||
938 | |a Internet Archive |b INAR |n structureofaffin0000weis | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn647843271 |
---|---|
_version_ | 1816881728189366272 |
adam_text | |
any_adam_object | |
author | Weiss, Richard M. (Richard Mark), 1946- |
author_GND | http://id.loc.gov/authorities/names/n2002160703 |
author_facet | Weiss, Richard M. (Richard Mark), 1946- |
author_role | |
author_sort | Weiss, Richard M. 1946- |
author_variant | r m w rm rmw |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA174 |
callnumber-raw | QA174.2 .W454 2009eb |
callnumber-search | QA174.2 .W454 2009eb |
callnumber-sort | QA 3174.2 W454 42009EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 830 SK 260 |
collection | ZDB-4-EBA |
contents | Preface; Chapter 1. Affine Coxeter Diagrams; Chapter 2. Root Systems; Chapter 3. Root Data with Valuation; Chapter 4. Sectors; Chapter 5. Faces; Chapter 6. Gems; Chapter 7. Affine Buildings; Chapter 8. The Building at Infinity; Chapter 9. Trees with Valuation; Chapter 10. Wall Trees; Chapter 11. Panel Trees; Chapter 12. Tree-Preserving Isomorphisms; Chapter 13. The Moufang Property at Infinity; Chapter 14. Existence; Chapter 15. Partial Valuations; Chapter 16. Bruhat-Tits Theory; Chapter 17. Completions; Chapter 18. Automorphisms and Residues. |
ctrlnum | (OCoLC)647843271 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10350cam a2202005Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn647843271</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">080410s2009 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2008062106</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OSU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AZK</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">CEF</subfield><subfield code="d">UX1</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">UWK</subfield><subfield code="d">ADU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLB</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CNNOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">XND</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield><subfield code="d">INARC</subfield><subfield code="d">VJV</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8B4411</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014765713</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">557402428</subfield><subfield code="a">587078441</subfield><subfield code="a">593215075</subfield><subfield code="a">698019114</subfield><subfield code="a">722735807</subfield><subfield code="a">728058811</subfield><subfield code="a">760158053</subfield><subfield code="a">767060583</subfield><subfield code="a">769365366</subfield><subfield code="a">812216908</subfield><subfield code="a">961555185</subfield><subfield code="a">962611499</subfield><subfield code="a">974574963</subfield><subfield code="a">974618746</subfield><subfield code="a">988408305</subfield><subfield code="a">992088113</subfield><subfield code="a">995021287</subfield><subfield code="a">1018030015</subfield><subfield code="a">1037925482</subfield><subfield code="a">1041777890</subfield><subfield code="a">1045530380</subfield><subfield code="a">1048328661</subfield><subfield code="a">1052562647</subfield><subfield code="a">1053446883</subfield><subfield code="a">1055364710</subfield><subfield code="a">1058110232</subfield><subfield code="a">1064148257</subfield><subfield code="a">1064946576</subfield><subfield code="a">1077244684</subfield><subfield code="a">1096429727</subfield><subfield code="a">1100702327</subfield><subfield code="a">1101725342</subfield><subfield code="a">1109314178</subfield><subfield code="a">1110266303</subfield><subfield code="a">1113178440</subfield><subfield code="a">1119077160</subfield><subfield code="a">1153454420</subfield><subfield code="a">1157949713</subfield><subfield code="a">1162465353</subfield><subfield code="a">1178722509</subfield><subfield code="a">1181910437</subfield><subfield code="a">1183977526</subfield><subfield code="a">1228620142</subfield><subfield code="a">1249169610</subfield><subfield code="a">1257342243</subfield><subfield code="a">1258401974</subfield><subfield code="a">1297040412</subfield><subfield code="a">1297877697</subfield><subfield code="a">1342129206</subfield><subfield code="a">1375501519</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400829057</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400829054</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282458361</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282458369</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612458361</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612458364</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691136592</subfield><subfield code="q">(cloth ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691138817</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691136599</subfield><subfield code="q">(cloth ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691138818</subfield><subfield code="q">(paper ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400829057</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)647843271</subfield><subfield code="z">(OCoLC)557402428</subfield><subfield code="z">(OCoLC)587078441</subfield><subfield code="z">(OCoLC)593215075</subfield><subfield code="z">(OCoLC)698019114</subfield><subfield code="z">(OCoLC)722735807</subfield><subfield code="z">(OCoLC)728058811</subfield><subfield code="z">(OCoLC)760158053</subfield><subfield code="z">(OCoLC)767060583</subfield><subfield code="z">(OCoLC)769365366</subfield><subfield code="z">(OCoLC)812216908</subfield><subfield code="z">(OCoLC)961555185</subfield><subfield code="z">(OCoLC)962611499</subfield><subfield code="z">(OCoLC)974574963</subfield><subfield code="z">(OCoLC)974618746</subfield><subfield code="z">(OCoLC)988408305</subfield><subfield code="z">(OCoLC)992088113</subfield><subfield code="z">(OCoLC)995021287</subfield><subfield code="z">(OCoLC)1018030015</subfield><subfield code="z">(OCoLC)1037925482</subfield><subfield code="z">(OCoLC)1041777890</subfield><subfield code="z">(OCoLC)1045530380</subfield><subfield code="z">(OCoLC)1048328661</subfield><subfield code="z">(OCoLC)1052562647</subfield><subfield code="z">(OCoLC)1053446883</subfield><subfield code="z">(OCoLC)1055364710</subfield><subfield code="z">(OCoLC)1058110232</subfield><subfield code="z">(OCoLC)1064148257</subfield><subfield code="z">(OCoLC)1064946576</subfield><subfield code="z">(OCoLC)1077244684</subfield><subfield code="z">(OCoLC)1096429727</subfield><subfield code="z">(OCoLC)1100702327</subfield><subfield code="z">(OCoLC)1101725342</subfield><subfield code="z">(OCoLC)1109314178</subfield><subfield code="z">(OCoLC)1110266303</subfield><subfield code="z">(OCoLC)1113178440</subfield><subfield code="z">(OCoLC)1119077160</subfield><subfield code="z">(OCoLC)1153454420</subfield><subfield code="z">(OCoLC)1157949713</subfield><subfield code="z">(OCoLC)1162465353</subfield><subfield code="z">(OCoLC)1178722509</subfield><subfield code="z">(OCoLC)1181910437</subfield><subfield code="z">(OCoLC)1183977526</subfield><subfield code="z">(OCoLC)1228620142</subfield><subfield code="z">(OCoLC)1249169610</subfield><subfield code="z">(OCoLC)1257342243</subfield><subfield code="z">(OCoLC)1258401974</subfield><subfield code="z">(OCoLC)1297040412</subfield><subfield code="z">(OCoLC)1297877697</subfield><subfield code="z">(OCoLC)1342129206</subfield><subfield code="z">(OCoLC)1375501519</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">245836</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttv0w9</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA174.2</subfield><subfield code="b">.W454 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weiss, Richard M.</subfield><subfield code="q">(Richard Mark),</subfield><subfield code="d">1946-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjB9DGd6J6WXBcmT8gGTBK</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002160703</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The structure of affine buildings /</subfield><subfield code="c">Richard M. Weiss.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 368 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 168</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Chapter 1. Affine Coxeter Diagrams; Chapter 2. Root Systems; Chapter 3. Root Data with Valuation; Chapter 4. Sectors; Chapter 5. Faces; Chapter 6. Gems; Chapter 7. Affine Buildings; Chapter 8. The Building at Infinity; Chapter 9. Trees with Valuation; Chapter 10. Wall Trees; Chapter 11. Panel Trees; Chapter 12. Tree-Preserving Isomorphisms; Chapter 13. The Moufang Property at Infinity; Chapter 14. Existence; Chapter 15. Partial Valuations; Chapter 16. Bruhat-Tits Theory; Chapter 17. Completions; Chapter 18. Automorphisms and Residues.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2011.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2011</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Buildings (Group theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88005178</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Moufang loops.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85087706</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Automorphisms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85010452</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Affine algebraic groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96011312</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Immeubles (Théorie des groupes)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Moufang, Boucles de.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Automorphismes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes algébriques affines.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Affine algebraic groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Automorphisms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Buildings (Group theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moufang loops</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Affines Gebäude</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4225935-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bruhat-Tits-Gebäude</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4398248-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moufang-Loop</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4440400-1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Addition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Additive group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Additive inverse.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic structure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ambient space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Associative property.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big O notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bijection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bilinear form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bounded set (topological vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bounded set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calculation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cardinality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cauchy sequence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Commutative property.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complete graph.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complete metric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Composition algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Connected component (graph theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Consistency.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Corollary.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coxeter group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coxeter-Dynkin diagram.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagram (category theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diameter.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Discrete valuation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Division algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dot product.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dynkin diagram.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">E6 (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">E7 (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">E8 (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Empty set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equipollence (geometry).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Free monoid.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental domain.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperplane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Jacques Tits.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">K0.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear combination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical induction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Metric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multiple edges.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Multiplicative inverse.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Number theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Octonion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parameter.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Permutation group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Permutation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pointwise.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polygon.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projective line.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quadratic form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quaternion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Remainder.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Root datum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Root system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subgroup.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subring.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subset.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Substructure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology of uniform convergence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Torus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tree (data structure).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tree structure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Two-dimensional space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Uniform continuity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Valuation (algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Without loss of generality.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The structure of affine buildings (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGMckB8fPFRYcmrcrJwJMq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="773" ind1="0" ind2=" "><subfield code="t">Academic Search Complete</subfield><subfield code="d">EBSCO</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Weiss, Richard M. (Richard Mark), 1946-</subfield><subfield code="t">Structure of affine buildings.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2009</subfield><subfield code="w">(DLC) 2008062106</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 168.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305786</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073584</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">12123249</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL483594</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10359253</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">305786</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">245836</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3157739</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">structureofaffin0000weis</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn647843271 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:20Z |
institution | BVB |
isbn | 9781400829057 1400829054 1282458361 9781282458369 9786612458361 6612458364 |
language | English |
oclc_num | 647843271 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 368 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Weiss, Richard M. (Richard Mark), 1946- https://id.oclc.org/worldcat/entity/E39PCjB9DGd6J6WXBcmT8gGTBK http://id.loc.gov/authorities/names/n2002160703 The structure of affine buildings / Richard M. Weiss. Princeton, N.J. : Princeton University Press, ©2009. 1 online resource (x, 368 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 168 Includes bibliographical references and index. Preface; Chapter 1. Affine Coxeter Diagrams; Chapter 2. Root Systems; Chapter 3. Root Data with Valuation; Chapter 4. Sectors; Chapter 5. Faces; Chapter 6. Gems; Chapter 7. Affine Buildings; Chapter 8. The Building at Infinity; Chapter 9. Trees with Valuation; Chapter 10. Wall Trees; Chapter 11. Panel Trees; Chapter 12. Tree-Preserving Isomorphisms; Chapter 13. The Moufang Property at Infinity; Chapter 14. Existence; Chapter 15. Partial Valuations; Chapter 16. Bruhat-Tits Theory; Chapter 17. Completions; Chapter 18. Automorphisms and Residues. In The Structure of Affine Buildings, Richard Weiss gives a detailed presentation of the complete proof of the classification of Bruhat-Tits buildings first completed by Jacques Tits in 1986. The book includes numerous results about automorphisms, completions, and residues of these buildings. It also includes tables correlating the results in the locally finite case with the results of Tits's classification of absolutely simple algebraic groups defined over a local field. A companion to Weiss's The Structure of Spherical Buildings, The Structure of Affine Buildings is organized around the clas. Print version record. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2011. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2011 HathiTrust Digital Library committed to preserve pda MiAaHDL In English. Buildings (Group theory) http://id.loc.gov/authorities/subjects/sh88005178 Moufang loops. http://id.loc.gov/authorities/subjects/sh85087706 Automorphisms. http://id.loc.gov/authorities/subjects/sh85010452 Affine algebraic groups. http://id.loc.gov/authorities/subjects/sh96011312 Immeubles (Théorie des groupes) Moufang, Boucles de. Automorphismes. Groupes algébriques affines. MATHEMATICS Group Theory. bisacsh Affine algebraic groups fast Automorphisms fast Buildings (Group theory) fast Moufang loops fast Affines Gebäude gnd http://d-nb.info/gnd/4225935-6 Bruhat-Tits-Gebäude gnd http://d-nb.info/gnd/4398248-7 Moufang-Loop gnd http://d-nb.info/gnd/4440400-1 Addition. Additive group. Additive inverse. Algebraic group. Algebraic structure. Ambient space. Associative property. Automorphism. Big O notation. Bijection. Bilinear form. Bounded set (topological vector space). Bounded set. Calculation. Cardinality. Cauchy sequence. Commutative property. Complete graph. Complete metric space. Composition algebra. Connected component (graph theory). Consistency. Continuous function. Coordinate system. Corollary. Coxeter group. Coxeter-Dynkin diagram. Diagram (category theory). Diameter. Dimension. Discrete valuation. Division algebra. Dot product. Dynkin diagram. E6 (mathematics). E7 (mathematics). E8 (mathematics). Empty set. Equipollence (geometry). Equivalence class. Equivalence relation. Euclidean geometry. Euclidean space. Existential quantification. Free monoid. Fundamental domain. Hyperplane. Infimum and supremum. Jacques Tits. K0. Linear combination. Mathematical induction. Metric space. Multiple edges. Multiplicative inverse. Number theory. Octonion. Parameter. Permutation group. Permutation. Pointwise. Polygon. Projective line. Quadratic form. Quaternion. Remainder. Root datum. Root system. Scientific notation. Sphere. Subgroup. Subring. Subset. Substructure. Theorem. Topology of uniform convergence. Topology. Torus. Tree (data structure). Tree structure. Two-dimensional space. Uniform continuity. Valuation (algebra). Vector space. Without loss of generality. has work: The structure of affine buildings (Text) https://id.oclc.org/worldcat/entity/E39PCGMckB8fPFRYcmrcrJwJMq https://id.oclc.org/worldcat/ontology/hasWork Academic Search Complete EBSCO Print version: Weiss, Richard M. (Richard Mark), 1946- Structure of affine buildings. Princeton, N.J. : Princeton University Press, ©2009 (DLC) 2008062106 Annals of mathematics studies ; no. 168. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305786 Volltext |
spellingShingle | Weiss, Richard M. (Richard Mark), 1946- The structure of affine buildings / Annals of mathematics studies ; Preface; Chapter 1. Affine Coxeter Diagrams; Chapter 2. Root Systems; Chapter 3. Root Data with Valuation; Chapter 4. Sectors; Chapter 5. Faces; Chapter 6. Gems; Chapter 7. Affine Buildings; Chapter 8. The Building at Infinity; Chapter 9. Trees with Valuation; Chapter 10. Wall Trees; Chapter 11. Panel Trees; Chapter 12. Tree-Preserving Isomorphisms; Chapter 13. The Moufang Property at Infinity; Chapter 14. Existence; Chapter 15. Partial Valuations; Chapter 16. Bruhat-Tits Theory; Chapter 17. Completions; Chapter 18. Automorphisms and Residues. Buildings (Group theory) http://id.loc.gov/authorities/subjects/sh88005178 Moufang loops. http://id.loc.gov/authorities/subjects/sh85087706 Automorphisms. http://id.loc.gov/authorities/subjects/sh85010452 Affine algebraic groups. http://id.loc.gov/authorities/subjects/sh96011312 Immeubles (Théorie des groupes) Moufang, Boucles de. Automorphismes. Groupes algébriques affines. MATHEMATICS Group Theory. bisacsh Affine algebraic groups fast Automorphisms fast Buildings (Group theory) fast Moufang loops fast Affines Gebäude gnd http://d-nb.info/gnd/4225935-6 Bruhat-Tits-Gebäude gnd http://d-nb.info/gnd/4398248-7 Moufang-Loop gnd http://d-nb.info/gnd/4440400-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh88005178 http://id.loc.gov/authorities/subjects/sh85087706 http://id.loc.gov/authorities/subjects/sh85010452 http://id.loc.gov/authorities/subjects/sh96011312 http://d-nb.info/gnd/4225935-6 http://d-nb.info/gnd/4398248-7 http://d-nb.info/gnd/4440400-1 |
title | The structure of affine buildings / |
title_auth | The structure of affine buildings / |
title_exact_search | The structure of affine buildings / |
title_full | The structure of affine buildings / Richard M. Weiss. |
title_fullStr | The structure of affine buildings / Richard M. Weiss. |
title_full_unstemmed | The structure of affine buildings / Richard M. Weiss. |
title_short | The structure of affine buildings / |
title_sort | structure of affine buildings |
topic | Buildings (Group theory) http://id.loc.gov/authorities/subjects/sh88005178 Moufang loops. http://id.loc.gov/authorities/subjects/sh85087706 Automorphisms. http://id.loc.gov/authorities/subjects/sh85010452 Affine algebraic groups. http://id.loc.gov/authorities/subjects/sh96011312 Immeubles (Théorie des groupes) Moufang, Boucles de. Automorphismes. Groupes algébriques affines. MATHEMATICS Group Theory. bisacsh Affine algebraic groups fast Automorphisms fast Buildings (Group theory) fast Moufang loops fast Affines Gebäude gnd http://d-nb.info/gnd/4225935-6 Bruhat-Tits-Gebäude gnd http://d-nb.info/gnd/4398248-7 Moufang-Loop gnd http://d-nb.info/gnd/4440400-1 |
topic_facet | Buildings (Group theory) Moufang loops. Automorphisms. Affine algebraic groups. Immeubles (Théorie des groupes) Moufang, Boucles de. Automorphismes. Groupes algébriques affines. MATHEMATICS Group Theory. Affine algebraic groups Automorphisms Moufang loops Affines Gebäude Bruhat-Tits-Gebäude Moufang-Loop |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305786 |
work_keys_str_mv | AT weissrichardm thestructureofaffinebuildings AT weissrichardm structureofaffinebuildings |