Wavelet and wave analysis as applied to materials with micro or nanostructure /:
This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is desc...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific Pub. Co.,
©2007.
|
Schriftenreihe: | Series on advances in mathematics for applied sciences ;
v. 74. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three. All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems. |
Beschreibung: | 1 online resource (x, 458 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 443-454) and index. |
ISBN: | 9789812709769 9812709762 1281918911 9781281918918 9786611918910 6611918914 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646769046 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070419s2007 njua ob 001 0 eng d | ||
010 | |z 2007016752 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d YDXCP |d UAB |d IDEBK |d OCLCQ |d OCLCO |d EBLCP |d DEBSZ |d OCLCQ |d COCUF |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d OCLCF |d JBG |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d OCLCQ |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d AJS |d OCLCO |d VHC |d OCLCQ |d OCLCO |d INARC |d OCLCL | ||
019 | |a 262286594 |a 359166901 |a 879074277 |a 988456271 |a 991952701 |a 1037753443 |a 1038632730 |a 1045501515 |a 1055375581 |a 1058101302 |a 1058339207 |a 1064624877 |a 1081260712 |a 1153493177 |a 1162203476 |a 1228546238 |a 1290092668 |a 1300539030 |a 1303446350 |a 1412553509 | ||
020 | |a 9789812709769 |q (electronic bk.) | ||
020 | |a 9812709762 |q (electronic bk.) | ||
020 | |a 1281918911 | ||
020 | |a 9781281918918 | ||
020 | |a 9786611918910 | ||
020 | |a 6611918914 | ||
020 | |z 9789812707840 |q (hardcover ; |q alk. paper) | ||
020 | |z 9812707840 |q (hardcover ; |q alk. paper) | ||
035 | |a (OCoLC)646769046 |z (OCoLC)262286594 |z (OCoLC)359166901 |z (OCoLC)879074277 |z (OCoLC)988456271 |z (OCoLC)991952701 |z (OCoLC)1037753443 |z (OCoLC)1038632730 |z (OCoLC)1045501515 |z (OCoLC)1055375581 |z (OCoLC)1058101302 |z (OCoLC)1058339207 |z (OCoLC)1064624877 |z (OCoLC)1081260712 |z (OCoLC)1153493177 |z (OCoLC)1162203476 |z (OCoLC)1228546238 |z (OCoLC)1290092668 |z (OCoLC)1300539030 |z (OCoLC)1303446350 |z (OCoLC)1412553509 | ||
050 | 4 | |a QC20.7.W38 |b C38 2007eb | |
072 | 7 | |a TEC |x 021000 |2 bisacsh | |
082 | 7 | |a 620.1/18015152433 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Cattani, Carlo, |d 1954- |1 https://id.oclc.org/worldcat/entity/E39PBJcrgf9H38gGMxT8b7bGHC |0 http://id.loc.gov/authorities/names/n2007027708 | |
245 | 1 | 0 | |a Wavelet and wave analysis as applied to materials with micro or nanostructure / |c Carlo Cattani, Jeremiah Rushchitsky. |
260 | |a Hackensack, NJ : |b World Scientific Pub. Co., |c ©2007. | ||
300 | |a 1 online resource (x, 458 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on advances in mathematics for applied sciences ; |v v. 74 | |
504 | |a Includes bibliographical references (pages 443-454) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Contents; 1. Introduction; 2. Wavelet Analysis; 2.1 Wavelet and Wavelet Analysis. Preliminary Notion; 2.1.1 The space L 2 (R); 2.1.2 The spaces L p (R) (p = 1); 2.1.3 The Hardy spaces H p (R) (p = 1); 2.1.4 The sketch scheme of wavelet analysis; 2.2 Rademacher, Walsh and Haar Functions; 2.2.1 System of Rademacher functions; 2.2.2 System of Walsh functions; 2.2.3 System of Haar functions; 2.3 Integral Fourier Transform. Heisenberg Uncertainty Principle; 2.4 Window Transform. Resolution; 2.4.1 Examples of window functions; 2.4.2 Properties of the window Fourier transform. | |
505 | 8 | |a 2.4.3 Discretization and discrete window Fourier transform2.5 Bases. Orthogonal Bases. Biorthogonal Bases; 2.6 Frames. Conditional and Unconditional Bases; 2.6.1 Wojtaszczyk's definition of unconditional basis (1997); 2.6.2 Meyer's definition of unconditional basis (1997); 2.6.3 Donoho's definition of unconditional basis (1993); 2.6.4 Definition of conditional basis; 2.7 Multiresolution Analysis; 2.8 Decomposition of the Space L 2 (R); 2.9 Discrete Wavelet Transform. Analysis and Synthesis; 2.9.1 Analysis: transition from the fine scale to the coarse scale. | |
505 | 8 | |a 2.9.2 Synthesis: transition from the coarse scale to the fine scale2.10 Wavelet Families; 2.10.1 Haar wavelet; 2.10.2 Strömberg wavelet; 2.10.3 Gabor wavelet; 2.10.4 Daubechies-Jaffard-Journé wavelet; 2.10.5 Gabor-Malvar wavelet; 2.10.6 Daubechies wavelet; 2.10.7 Grossmann-Morlet wavelet; 2.10.8 Mexican hat wavelet; 2.10.9 Coifman wavelet -- coiflet; 2.10.10 Malvar-Meyer-Coifman wavelet; 2.10.11 Shannon wavelet or sinc-wavelet; 2.10.12 Cohen-Daubechies-Feauveau wavelet; 2.10.13 Geronimo-Hardin-Massopust wavelet; 2.10.14 Battle-Lemarié wavelet; 2.11 Integral Wavelet Transform. | |
505 | 8 | |a 2.11.1 Definition of the wavelet transform2.11.2 Fourier transform of the wavelet; 2.11.3 The property of resolution; 2.11.4 Complex-value wavelets and their properties; 2.11.5 The main properties of wavelet transform; 2.11.6 Discretization of the wavelet transform; 2.11.7 Orthogonal wavelets; 2.11.8 Dyadic wavelets and dyadic wavelet transform; 2.11.9 Equation of the function (signal) energy balance; 3. Materials with Micro- or Nanostructure; 3.1 Macro-, Meso-, Micro-, and Nanomechanics; 3.2 Main Physical Properties of Materials; 3.3 Thermodynamical Theory of Material Continua. | |
505 | 8 | |a 3.4 Composite Materials3.5 Classical Model of Macroscopic (Effective) Moduli; 3.6 Other Microstructural Models; 3.6.1 Bolotin model of energy continualization; 3.6.2 Achenbach-Hermann model of effective stiffness; 3.6.3 Models of effective stiffness of high orders; 3.6.4 Asymptotic models of high orders; 3.6.5 Drumheller-Bedford lattice microstructural models; 3.6.6 Mindlin microstructural theory; 3.6.7 Eringen microstructural model. Eringen-Maugin model; 3.6.8 Pobedrya microstructural theory; 3.7 Structural Model of Elastic Mixtures; 3.7.1 Viscoelastic mixtures; 3.7.2 Piezoelastic mixtures. | |
520 | |a This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three. All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems. | ||
546 | |a English. | ||
650 | 0 | |a Wavelets (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh91006163 | |
650 | 0 | |a Nanostructures |x Mathematics. | |
650 | 6 | |a Ondelettes. | |
650 | 6 | |a Nanostructures |x Mathématiques. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Material Science. |2 bisacsh | |
650 | 7 | |a Wavelets (Mathematics) |2 fast | |
700 | 1 | |a Rushchit︠s︡kiĭ, I︠A︡. I︠A︡. |q (I︠A︡rema I︠A︡roslavovich) |1 https://id.oclc.org/worldcat/entity/E39PCjKJkRF6YYvMC7F8QrfykC |0 http://id.loc.gov/authorities/names/n92090063 | |
776 | 0 | 8 | |i Print version: |a Cattani, Carlo, 1954- |t Wavelet and wave analysis as applied to materials with micro or nanostructure. |d Hackensack, NJ : World Scientific Pub. Co., ©2007 |w (DLC) 2007016752 |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 74. |0 http://id.loc.gov/authorities/names/n90710999 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235956 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684217 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1679512 | ||
938 | |a ebrary |b EBRY |n ebr10255992 | ||
938 | |a EBSCOhost |b EBSC |n 235956 | ||
938 | |a YBP Library Services |b YANK |n 2891926 | ||
938 | |a Internet Archive |b INAR |n waveletwaveanaly0000catt | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646769046 |
---|---|
_version_ | 1816881725282713600 |
adam_text | |
any_adam_object | |
author | Cattani, Carlo, 1954- |
author2 | Rushchit︠s︡kiĭ, I︠A︡. I︠A︡. (I︠A︡rema I︠A︡roslavovich) |
author2_role | |
author2_variant | i i r ii iir |
author_GND | http://id.loc.gov/authorities/names/n2007027708 http://id.loc.gov/authorities/names/n92090063 |
author_facet | Cattani, Carlo, 1954- Rushchit︠s︡kiĭ, I︠A︡. I︠A︡. (I︠A︡rema I︠A︡roslavovich) |
author_role | |
author_sort | Cattani, Carlo, 1954- |
author_variant | c c cc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.W38 C38 2007eb |
callnumber-search | QC20.7.W38 C38 2007eb |
callnumber-sort | QC 220.7 W38 C38 42007EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface; Contents; 1. Introduction; 2. Wavelet Analysis; 2.1 Wavelet and Wavelet Analysis. Preliminary Notion; 2.1.1 The space L 2 (R); 2.1.2 The spaces L p (R) (p = 1); 2.1.3 The Hardy spaces H p (R) (p = 1); 2.1.4 The sketch scheme of wavelet analysis; 2.2 Rademacher, Walsh and Haar Functions; 2.2.1 System of Rademacher functions; 2.2.2 System of Walsh functions; 2.2.3 System of Haar functions; 2.3 Integral Fourier Transform. Heisenberg Uncertainty Principle; 2.4 Window Transform. Resolution; 2.4.1 Examples of window functions; 2.4.2 Properties of the window Fourier transform. 2.4.3 Discretization and discrete window Fourier transform2.5 Bases. Orthogonal Bases. Biorthogonal Bases; 2.6 Frames. Conditional and Unconditional Bases; 2.6.1 Wojtaszczyk's definition of unconditional basis (1997); 2.6.2 Meyer's definition of unconditional basis (1997); 2.6.3 Donoho's definition of unconditional basis (1993); 2.6.4 Definition of conditional basis; 2.7 Multiresolution Analysis; 2.8 Decomposition of the Space L 2 (R); 2.9 Discrete Wavelet Transform. Analysis and Synthesis; 2.9.1 Analysis: transition from the fine scale to the coarse scale. 2.9.2 Synthesis: transition from the coarse scale to the fine scale2.10 Wavelet Families; 2.10.1 Haar wavelet; 2.10.2 Strömberg wavelet; 2.10.3 Gabor wavelet; 2.10.4 Daubechies-Jaffard-Journé wavelet; 2.10.5 Gabor-Malvar wavelet; 2.10.6 Daubechies wavelet; 2.10.7 Grossmann-Morlet wavelet; 2.10.8 Mexican hat wavelet; 2.10.9 Coifman wavelet -- coiflet; 2.10.10 Malvar-Meyer-Coifman wavelet; 2.10.11 Shannon wavelet or sinc-wavelet; 2.10.12 Cohen-Daubechies-Feauveau wavelet; 2.10.13 Geronimo-Hardin-Massopust wavelet; 2.10.14 Battle-Lemarié wavelet; 2.11 Integral Wavelet Transform. 2.11.1 Definition of the wavelet transform2.11.2 Fourier transform of the wavelet; 2.11.3 The property of resolution; 2.11.4 Complex-value wavelets and their properties; 2.11.5 The main properties of wavelet transform; 2.11.6 Discretization of the wavelet transform; 2.11.7 Orthogonal wavelets; 2.11.8 Dyadic wavelets and dyadic wavelet transform; 2.11.9 Equation of the function (signal) energy balance; 3. Materials with Micro- or Nanostructure; 3.1 Macro-, Meso-, Micro-, and Nanomechanics; 3.2 Main Physical Properties of Materials; 3.3 Thermodynamical Theory of Material Continua. 3.4 Composite Materials3.5 Classical Model of Macroscopic (Effective) Moduli; 3.6 Other Microstructural Models; 3.6.1 Bolotin model of energy continualization; 3.6.2 Achenbach-Hermann model of effective stiffness; 3.6.3 Models of effective stiffness of high orders; 3.6.4 Asymptotic models of high orders; 3.6.5 Drumheller-Bedford lattice microstructural models; 3.6.6 Mindlin microstructural theory; 3.6.7 Eringen microstructural model. Eringen-Maugin model; 3.6.8 Pobedrya microstructural theory; 3.7 Structural Model of Elastic Mixtures; 3.7.1 Viscoelastic mixtures; 3.7.2 Piezoelastic mixtures. |
ctrlnum | (OCoLC)646769046 |
dewey-full | 620.1/18015152433 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/18015152433 |
dewey-search | 620.1/18015152433 |
dewey-sort | 3620.1 1118015152433 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07367cam a2200697Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646769046</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070419s2007 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007016752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UAB</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCF</subfield><subfield code="d">JBG</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VHC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">262286594</subfield><subfield code="a">359166901</subfield><subfield code="a">879074277</subfield><subfield code="a">988456271</subfield><subfield code="a">991952701</subfield><subfield code="a">1037753443</subfield><subfield code="a">1038632730</subfield><subfield code="a">1045501515</subfield><subfield code="a">1055375581</subfield><subfield code="a">1058101302</subfield><subfield code="a">1058339207</subfield><subfield code="a">1064624877</subfield><subfield code="a">1081260712</subfield><subfield code="a">1153493177</subfield><subfield code="a">1162203476</subfield><subfield code="a">1228546238</subfield><subfield code="a">1290092668</subfield><subfield code="a">1300539030</subfield><subfield code="a">1303446350</subfield><subfield code="a">1412553509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812709769</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812709762</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281918911</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281918918</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611918910</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611918914</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812707840</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812707840</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646769046</subfield><subfield code="z">(OCoLC)262286594</subfield><subfield code="z">(OCoLC)359166901</subfield><subfield code="z">(OCoLC)879074277</subfield><subfield code="z">(OCoLC)988456271</subfield><subfield code="z">(OCoLC)991952701</subfield><subfield code="z">(OCoLC)1037753443</subfield><subfield code="z">(OCoLC)1038632730</subfield><subfield code="z">(OCoLC)1045501515</subfield><subfield code="z">(OCoLC)1055375581</subfield><subfield code="z">(OCoLC)1058101302</subfield><subfield code="z">(OCoLC)1058339207</subfield><subfield code="z">(OCoLC)1064624877</subfield><subfield code="z">(OCoLC)1081260712</subfield><subfield code="z">(OCoLC)1153493177</subfield><subfield code="z">(OCoLC)1162203476</subfield><subfield code="z">(OCoLC)1228546238</subfield><subfield code="z">(OCoLC)1290092668</subfield><subfield code="z">(OCoLC)1300539030</subfield><subfield code="z">(OCoLC)1303446350</subfield><subfield code="z">(OCoLC)1412553509</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.W38</subfield><subfield code="b">C38 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">021000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.1/18015152433</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cattani, Carlo,</subfield><subfield code="d">1954-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJcrgf9H38gGMxT8b7bGHC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2007027708</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelet and wave analysis as applied to materials with micro or nanostructure /</subfield><subfield code="c">Carlo Cattani, Jeremiah Rushchitsky.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 458 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 74</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 443-454) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; 1. Introduction; 2. Wavelet Analysis; 2.1 Wavelet and Wavelet Analysis. Preliminary Notion; 2.1.1 The space L 2 (R); 2.1.2 The spaces L p (R) (p = 1); 2.1.3 The Hardy spaces H p (R) (p = 1); 2.1.4 The sketch scheme of wavelet analysis; 2.2 Rademacher, Walsh and Haar Functions; 2.2.1 System of Rademacher functions; 2.2.2 System of Walsh functions; 2.2.3 System of Haar functions; 2.3 Integral Fourier Transform. Heisenberg Uncertainty Principle; 2.4 Window Transform. Resolution; 2.4.1 Examples of window functions; 2.4.2 Properties of the window Fourier transform.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.3 Discretization and discrete window Fourier transform2.5 Bases. Orthogonal Bases. Biorthogonal Bases; 2.6 Frames. Conditional and Unconditional Bases; 2.6.1 Wojtaszczyk's definition of unconditional basis (1997); 2.6.2 Meyer's definition of unconditional basis (1997); 2.6.3 Donoho's definition of unconditional basis (1993); 2.6.4 Definition of conditional basis; 2.7 Multiresolution Analysis; 2.8 Decomposition of the Space L 2 (R); 2.9 Discrete Wavelet Transform. Analysis and Synthesis; 2.9.1 Analysis: transition from the fine scale to the coarse scale.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.9.2 Synthesis: transition from the coarse scale to the fine scale2.10 Wavelet Families; 2.10.1 Haar wavelet; 2.10.2 Strömberg wavelet; 2.10.3 Gabor wavelet; 2.10.4 Daubechies-Jaffard-Journé wavelet; 2.10.5 Gabor-Malvar wavelet; 2.10.6 Daubechies wavelet; 2.10.7 Grossmann-Morlet wavelet; 2.10.8 Mexican hat wavelet; 2.10.9 Coifman wavelet -- coiflet; 2.10.10 Malvar-Meyer-Coifman wavelet; 2.10.11 Shannon wavelet or sinc-wavelet; 2.10.12 Cohen-Daubechies-Feauveau wavelet; 2.10.13 Geronimo-Hardin-Massopust wavelet; 2.10.14 Battle-Lemarié wavelet; 2.11 Integral Wavelet Transform.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.11.1 Definition of the wavelet transform2.11.2 Fourier transform of the wavelet; 2.11.3 The property of resolution; 2.11.4 Complex-value wavelets and their properties; 2.11.5 The main properties of wavelet transform; 2.11.6 Discretization of the wavelet transform; 2.11.7 Orthogonal wavelets; 2.11.8 Dyadic wavelets and dyadic wavelet transform; 2.11.9 Equation of the function (signal) energy balance; 3. Materials with Micro- or Nanostructure; 3.1 Macro-, Meso-, Micro-, and Nanomechanics; 3.2 Main Physical Properties of Materials; 3.3 Thermodynamical Theory of Material Continua.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 Composite Materials3.5 Classical Model of Macroscopic (Effective) Moduli; 3.6 Other Microstructural Models; 3.6.1 Bolotin model of energy continualization; 3.6.2 Achenbach-Hermann model of effective stiffness; 3.6.3 Models of effective stiffness of high orders; 3.6.4 Asymptotic models of high orders; 3.6.5 Drumheller-Bedford lattice microstructural models; 3.6.6 Mindlin microstructural theory; 3.6.7 Eringen microstructural model. Eringen-Maugin model; 3.6.8 Pobedrya microstructural theory; 3.7 Structural Model of Elastic Mixtures; 3.7.1 Viscoelastic mixtures; 3.7.2 Piezoelastic mixtures.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three. All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wavelets (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91006163</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructures</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ondelettes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanostructures</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Material Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wavelets (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rushchit︠s︡kiĭ, I︠A︡. I︠A︡.</subfield><subfield code="q">(I︠A︡rema I︠A︡roslavovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjKJkRF6YYvMC7F8QrfykC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92090063</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cattani, Carlo, 1954-</subfield><subfield code="t">Wavelet and wave analysis as applied to materials with micro or nanostructure.</subfield><subfield code="d">Hackensack, NJ : World Scientific Pub. Co., ©2007</subfield><subfield code="w">(DLC) 2007016752</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 74.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90710999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235956</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684217</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679512</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255992</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235956</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2891926</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">waveletwaveanaly0000catt</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn646769046 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:17Z |
institution | BVB |
isbn | 9789812709769 9812709762 1281918911 9781281918918 9786611918910 6611918914 |
language | English |
oclc_num | 646769046 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 458 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific Pub. Co., |
record_format | marc |
series | Series on advances in mathematics for applied sciences ; |
series2 | Series on advances in mathematics for applied sciences ; |
spelling | Cattani, Carlo, 1954- https://id.oclc.org/worldcat/entity/E39PBJcrgf9H38gGMxT8b7bGHC http://id.loc.gov/authorities/names/n2007027708 Wavelet and wave analysis as applied to materials with micro or nanostructure / Carlo Cattani, Jeremiah Rushchitsky. Hackensack, NJ : World Scientific Pub. Co., ©2007. 1 online resource (x, 458 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on advances in mathematics for applied sciences ; v. 74 Includes bibliographical references (pages 443-454) and index. Print version record. Preface; Contents; 1. Introduction; 2. Wavelet Analysis; 2.1 Wavelet and Wavelet Analysis. Preliminary Notion; 2.1.1 The space L 2 (R); 2.1.2 The spaces L p (R) (p = 1); 2.1.3 The Hardy spaces H p (R) (p = 1); 2.1.4 The sketch scheme of wavelet analysis; 2.2 Rademacher, Walsh and Haar Functions; 2.2.1 System of Rademacher functions; 2.2.2 System of Walsh functions; 2.2.3 System of Haar functions; 2.3 Integral Fourier Transform. Heisenberg Uncertainty Principle; 2.4 Window Transform. Resolution; 2.4.1 Examples of window functions; 2.4.2 Properties of the window Fourier transform. 2.4.3 Discretization and discrete window Fourier transform2.5 Bases. Orthogonal Bases. Biorthogonal Bases; 2.6 Frames. Conditional and Unconditional Bases; 2.6.1 Wojtaszczyk's definition of unconditional basis (1997); 2.6.2 Meyer's definition of unconditional basis (1997); 2.6.3 Donoho's definition of unconditional basis (1993); 2.6.4 Definition of conditional basis; 2.7 Multiresolution Analysis; 2.8 Decomposition of the Space L 2 (R); 2.9 Discrete Wavelet Transform. Analysis and Synthesis; 2.9.1 Analysis: transition from the fine scale to the coarse scale. 2.9.2 Synthesis: transition from the coarse scale to the fine scale2.10 Wavelet Families; 2.10.1 Haar wavelet; 2.10.2 Strömberg wavelet; 2.10.3 Gabor wavelet; 2.10.4 Daubechies-Jaffard-Journé wavelet; 2.10.5 Gabor-Malvar wavelet; 2.10.6 Daubechies wavelet; 2.10.7 Grossmann-Morlet wavelet; 2.10.8 Mexican hat wavelet; 2.10.9 Coifman wavelet -- coiflet; 2.10.10 Malvar-Meyer-Coifman wavelet; 2.10.11 Shannon wavelet or sinc-wavelet; 2.10.12 Cohen-Daubechies-Feauveau wavelet; 2.10.13 Geronimo-Hardin-Massopust wavelet; 2.10.14 Battle-Lemarié wavelet; 2.11 Integral Wavelet Transform. 2.11.1 Definition of the wavelet transform2.11.2 Fourier transform of the wavelet; 2.11.3 The property of resolution; 2.11.4 Complex-value wavelets and their properties; 2.11.5 The main properties of wavelet transform; 2.11.6 Discretization of the wavelet transform; 2.11.7 Orthogonal wavelets; 2.11.8 Dyadic wavelets and dyadic wavelet transform; 2.11.9 Equation of the function (signal) energy balance; 3. Materials with Micro- or Nanostructure; 3.1 Macro-, Meso-, Micro-, and Nanomechanics; 3.2 Main Physical Properties of Materials; 3.3 Thermodynamical Theory of Material Continua. 3.4 Composite Materials3.5 Classical Model of Macroscopic (Effective) Moduli; 3.6 Other Microstructural Models; 3.6.1 Bolotin model of energy continualization; 3.6.2 Achenbach-Hermann model of effective stiffness; 3.6.3 Models of effective stiffness of high orders; 3.6.4 Asymptotic models of high orders; 3.6.5 Drumheller-Bedford lattice microstructural models; 3.6.6 Mindlin microstructural theory; 3.6.7 Eringen microstructural model. Eringen-Maugin model; 3.6.8 Pobedrya microstructural theory; 3.7 Structural Model of Elastic Mixtures; 3.7.1 Viscoelastic mixtures; 3.7.2 Piezoelastic mixtures. This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three. All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems. English. Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Nanostructures Mathematics. Ondelettes. Nanostructures Mathématiques. TECHNOLOGY & ENGINEERING Material Science. bisacsh Wavelets (Mathematics) fast Rushchit︠s︡kiĭ, I︠A︡. I︠A︡. (I︠A︡rema I︠A︡roslavovich) https://id.oclc.org/worldcat/entity/E39PCjKJkRF6YYvMC7F8QrfykC http://id.loc.gov/authorities/names/n92090063 Print version: Cattani, Carlo, 1954- Wavelet and wave analysis as applied to materials with micro or nanostructure. Hackensack, NJ : World Scientific Pub. Co., ©2007 (DLC) 2007016752 Series on advances in mathematics for applied sciences ; v. 74. http://id.loc.gov/authorities/names/n90710999 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235956 Volltext |
spellingShingle | Cattani, Carlo, 1954- Wavelet and wave analysis as applied to materials with micro or nanostructure / Series on advances in mathematics for applied sciences ; Preface; Contents; 1. Introduction; 2. Wavelet Analysis; 2.1 Wavelet and Wavelet Analysis. Preliminary Notion; 2.1.1 The space L 2 (R); 2.1.2 The spaces L p (R) (p = 1); 2.1.3 The Hardy spaces H p (R) (p = 1); 2.1.4 The sketch scheme of wavelet analysis; 2.2 Rademacher, Walsh and Haar Functions; 2.2.1 System of Rademacher functions; 2.2.2 System of Walsh functions; 2.2.3 System of Haar functions; 2.3 Integral Fourier Transform. Heisenberg Uncertainty Principle; 2.4 Window Transform. Resolution; 2.4.1 Examples of window functions; 2.4.2 Properties of the window Fourier transform. 2.4.3 Discretization and discrete window Fourier transform2.5 Bases. Orthogonal Bases. Biorthogonal Bases; 2.6 Frames. Conditional and Unconditional Bases; 2.6.1 Wojtaszczyk's definition of unconditional basis (1997); 2.6.2 Meyer's definition of unconditional basis (1997); 2.6.3 Donoho's definition of unconditional basis (1993); 2.6.4 Definition of conditional basis; 2.7 Multiresolution Analysis; 2.8 Decomposition of the Space L 2 (R); 2.9 Discrete Wavelet Transform. Analysis and Synthesis; 2.9.1 Analysis: transition from the fine scale to the coarse scale. 2.9.2 Synthesis: transition from the coarse scale to the fine scale2.10 Wavelet Families; 2.10.1 Haar wavelet; 2.10.2 Strömberg wavelet; 2.10.3 Gabor wavelet; 2.10.4 Daubechies-Jaffard-Journé wavelet; 2.10.5 Gabor-Malvar wavelet; 2.10.6 Daubechies wavelet; 2.10.7 Grossmann-Morlet wavelet; 2.10.8 Mexican hat wavelet; 2.10.9 Coifman wavelet -- coiflet; 2.10.10 Malvar-Meyer-Coifman wavelet; 2.10.11 Shannon wavelet or sinc-wavelet; 2.10.12 Cohen-Daubechies-Feauveau wavelet; 2.10.13 Geronimo-Hardin-Massopust wavelet; 2.10.14 Battle-Lemarié wavelet; 2.11 Integral Wavelet Transform. 2.11.1 Definition of the wavelet transform2.11.2 Fourier transform of the wavelet; 2.11.3 The property of resolution; 2.11.4 Complex-value wavelets and their properties; 2.11.5 The main properties of wavelet transform; 2.11.6 Discretization of the wavelet transform; 2.11.7 Orthogonal wavelets; 2.11.8 Dyadic wavelets and dyadic wavelet transform; 2.11.9 Equation of the function (signal) energy balance; 3. Materials with Micro- or Nanostructure; 3.1 Macro-, Meso-, Micro-, and Nanomechanics; 3.2 Main Physical Properties of Materials; 3.3 Thermodynamical Theory of Material Continua. 3.4 Composite Materials3.5 Classical Model of Macroscopic (Effective) Moduli; 3.6 Other Microstructural Models; 3.6.1 Bolotin model of energy continualization; 3.6.2 Achenbach-Hermann model of effective stiffness; 3.6.3 Models of effective stiffness of high orders; 3.6.4 Asymptotic models of high orders; 3.6.5 Drumheller-Bedford lattice microstructural models; 3.6.6 Mindlin microstructural theory; 3.6.7 Eringen microstructural model. Eringen-Maugin model; 3.6.8 Pobedrya microstructural theory; 3.7 Structural Model of Elastic Mixtures; 3.7.1 Viscoelastic mixtures; 3.7.2 Piezoelastic mixtures. Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Nanostructures Mathematics. Ondelettes. Nanostructures Mathématiques. TECHNOLOGY & ENGINEERING Material Science. bisacsh Wavelets (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh91006163 |
title | Wavelet and wave analysis as applied to materials with micro or nanostructure / |
title_auth | Wavelet and wave analysis as applied to materials with micro or nanostructure / |
title_exact_search | Wavelet and wave analysis as applied to materials with micro or nanostructure / |
title_full | Wavelet and wave analysis as applied to materials with micro or nanostructure / Carlo Cattani, Jeremiah Rushchitsky. |
title_fullStr | Wavelet and wave analysis as applied to materials with micro or nanostructure / Carlo Cattani, Jeremiah Rushchitsky. |
title_full_unstemmed | Wavelet and wave analysis as applied to materials with micro or nanostructure / Carlo Cattani, Jeremiah Rushchitsky. |
title_short | Wavelet and wave analysis as applied to materials with micro or nanostructure / |
title_sort | wavelet and wave analysis as applied to materials with micro or nanostructure |
topic | Wavelets (Mathematics) http://id.loc.gov/authorities/subjects/sh91006163 Nanostructures Mathematics. Ondelettes. Nanostructures Mathématiques. TECHNOLOGY & ENGINEERING Material Science. bisacsh Wavelets (Mathematics) fast |
topic_facet | Wavelets (Mathematics) Nanostructures Mathematics. Ondelettes. Nanostructures Mathématiques. TECHNOLOGY & ENGINEERING Material Science. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235956 |
work_keys_str_mv | AT cattanicarlo waveletandwaveanalysisasappliedtomaterialswithmicroornanostructure AT rushchitskiiiaia waveletandwaveanalysisasappliedtomaterialswithmicroornanostructure |