Lecture notes on Chern-Simons-Witten theory /:
This work is based on Witten's lectures on topological quantum field theory. Sen Hu has included several appendices providing detals left out of Witten's lectures, and has added two more chapters to update some developments.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, NJ :
World Scientific,
©2001.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This work is based on Witten's lectures on topological quantum field theory. Sen Hu has included several appendices providing detals left out of Witten's lectures, and has added two more chapters to update some developments. |
Beschreibung: | 1 online resource (xii, 200 pages :) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812386572 9789812386571 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646768978 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 011010s2001 si a ob 001 0 eng d | ||
010 | |a 2001275381 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d YDXCP |d OCLCQ |d ZCU |d OCLCO |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d AGLDB |d COCUF |d MOR |d PIFAG |d OCLCQ |d OCLCO |d U3W |d STF |d WRM |d VTS |d NRAMU |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d M8D |d HS0 |d LEAUB |d OCLCO |d UKCRE |d QGK |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
015 | |a GB99-W5530 | ||
019 | |a 52839390 |a 505136637 |a 764502562 |a 988518598 |a 992077157 |a 1037785198 |a 1038654558 |a 1045508665 |a 1055321330 |a 1064110412 |a 1081293347 |a 1086530650 |a 1153036592 |a 1259177046 | ||
020 | |a 9812386572 |q (electronic bk.) | ||
020 | |a 9789812386571 |q (electronic bk.) | ||
020 | |z 9789810239084 |q (acid-free paper) | ||
020 | |z 9789810239091 |q (pbk. ; |q acid-free paper) | ||
020 | |z 9810239084 |q (acid-free paper) | ||
020 | |z 9810239092 |q (pbk. ; |q acid-free paper) | ||
035 | |a (OCoLC)646768978 |z (OCoLC)52839390 |z (OCoLC)505136637 |z (OCoLC)764502562 |z (OCoLC)988518598 |z (OCoLC)992077157 |z (OCoLC)1037785198 |z (OCoLC)1038654558 |z (OCoLC)1045508665 |z (OCoLC)1055321330 |z (OCoLC)1064110412 |z (OCoLC)1081293347 |z (OCoLC)1086530650 |z (OCoLC)1153036592 |z (OCoLC)1259177046 | ||
050 | 4 | |a QC174.45 |b .H8 2001eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
072 | 7 | |a SCI |2 eflch | |
072 | |a PH | ||
072 | |a PHQ | ||
082 | 7 | |a 530.14/3 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Hu, Sen. | |
245 | 1 | 0 | |a Lecture notes on Chern-Simons-Witten theory / |c Sen Hu. |
246 | 3 | 0 | |a Chern-Simons-Witten theory |
260 | |a Singapore ; |a River Edge, NJ : |b World Scientific, |c ©2001. | ||
300 | |a 1 online resource (xii, 200 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Examples of quantizations; classical solutions of gauge field theory; quantization of Chern-Simons action; Chern-Simons-Witten theory and three manifold invariant; renormalized perturbation series of Chern-Simons-Witten theory; topological sigma model and localization. Appendices: complex manifold without potential theory, S.S. Chern; geometric quantization of Chern-Simons gauge theory, S. Axelrod, S.D. Pietra and E. Witten; on holomorphic factorization of WZW and Coset models, E. Witten. | |
520 | |a This work is based on Witten's lectures on topological quantum field theory. Sen Hu has included several appendices providing detals left out of Witten's lectures, and has added two more chapters to update some developments. | ||
520 | |b This monograph has arisen in part from E. Witten's lectures on topological quantum field theory given in the spring of 1989 at Princeton University. At that time, Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials.;In this book, Sen Hu has added material to provide some of the details left out of Witten's lectures and to update some new developments. In Chapter Four he presents a construction of knot invariant via representation of mapping class groups based on the work of Moore-Seiberg and Kohno. In Chapter Six he offers an approach to constructing knot invariant from string theory and topological sigma models proposed by Witten and Vafa.;In addition, relevant material by S.S. Chern and E. Witten has been included as appendices for the convenience of readers. | ||
546 | |a English. | ||
650 | 0 | |a Gauge fields (Physics) |0 http://id.loc.gov/authorities/subjects/sh85053534 | |
650 | 0 | |a Geometric quantization. |0 http://id.loc.gov/authorities/subjects/sh85054127 | |
650 | 0 | |a Invariants. |0 http://id.loc.gov/authorities/subjects/sh85067665 | |
650 | 0 | |a Quantum field theory |x Mathematics. | |
650 | 0 | |a Three-manifolds (Topology) |0 http://id.loc.gov/authorities/subjects/sh85135028 | |
650 | 6 | |a Théorie quantique des champs |x Mathématique. | |
650 | 6 | |a Quantification géométrique. | |
650 | 6 | |a Champs de jauge (Physique) | |
650 | 6 | |a Variétés topologiques à 3 dimensions. | |
650 | 6 | |a Invariants. | |
650 | 6 | |a Théorie quantique des champs |x Mathématiques. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Gauge fields (Physics) |2 fast | |
650 | 7 | |a Geometric quantization |2 fast | |
650 | 7 | |a Invariants |2 fast | |
650 | 7 | |a Quantum field theory |x Mathematics |2 fast | |
650 | 7 | |a Three-manifolds (Topology) |2 fast | |
700 | 1 | |a Witten, E. | |
758 | |i has work: |a Lecture notes on Chern-Simons-Witten theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGBF9B4HkGfg9ywRcfxX7d |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Hu, Sen. |t Lecture notes on Chern-Simons-Witten theory. |d Singapore ; River Edge, NJ : World Scientific, ©2001 |w (DLC) 2001275381 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91478 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91478 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10255949 | ||
938 | |a EBSCOhost |b EBSC |n 91478 | ||
938 | |a YBP Library Services |b YANK |n 2407634 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646768978 |
---|---|
_version_ | 1826941629234151424 |
adam_text | |
any_adam_object | |
author | Hu, Sen |
author2 | Witten, E. |
author2_role | |
author2_variant | e w ew |
author_facet | Hu, Sen Witten, E. |
author_role | |
author_sort | Hu, Sen |
author_variant | s h sh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.45 .H8 2001eb |
callnumber-search | QC174.45 .H8 2001eb |
callnumber-sort | QC 3174.45 H8 42001EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Examples of quantizations; classical solutions of gauge field theory; quantization of Chern-Simons action; Chern-Simons-Witten theory and three manifold invariant; renormalized perturbation series of Chern-Simons-Witten theory; topological sigma model and localization. Appendices: complex manifold without potential theory, S.S. Chern; geometric quantization of Chern-Simons gauge theory, S. Axelrod, S.D. Pietra and E. Witten; on holomorphic factorization of WZW and Coset models, E. Witten. |
ctrlnum | (OCoLC)646768978 |
dewey-full | 530.14/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.14/3 |
dewey-search | 530.14/3 |
dewey-sort | 3530.14 13 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05301cam a2200781Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646768978</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">011010s2001 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2001275381</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">HS0</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKCRE</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GB99-W5530</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">52839390</subfield><subfield code="a">505136637</subfield><subfield code="a">764502562</subfield><subfield code="a">988518598</subfield><subfield code="a">992077157</subfield><subfield code="a">1037785198</subfield><subfield code="a">1038654558</subfield><subfield code="a">1045508665</subfield><subfield code="a">1055321330</subfield><subfield code="a">1064110412</subfield><subfield code="a">1081293347</subfield><subfield code="a">1086530650</subfield><subfield code="a">1153036592</subfield><subfield code="a">1259177046</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812386572</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812386571</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810239084</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810239091</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810239084</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810239092</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646768978</subfield><subfield code="z">(OCoLC)52839390</subfield><subfield code="z">(OCoLC)505136637</subfield><subfield code="z">(OCoLC)764502562</subfield><subfield code="z">(OCoLC)988518598</subfield><subfield code="z">(OCoLC)992077157</subfield><subfield code="z">(OCoLC)1037785198</subfield><subfield code="z">(OCoLC)1038654558</subfield><subfield code="z">(OCoLC)1045508665</subfield><subfield code="z">(OCoLC)1055321330</subfield><subfield code="z">(OCoLC)1064110412</subfield><subfield code="z">(OCoLC)1081293347</subfield><subfield code="z">(OCoLC)1086530650</subfield><subfield code="z">(OCoLC)1153036592</subfield><subfield code="z">(OCoLC)1259177046</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.45</subfield><subfield code="b">.H8 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="2">eflch</subfield></datafield><datafield tag="072" ind1=" " ind2=" "><subfield code="a">PH</subfield></datafield><datafield tag="072" ind1=" " ind2=" "><subfield code="a">PHQ</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.14/3</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Sen.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lecture notes on Chern-Simons-Witten theory /</subfield><subfield code="c">Sen Hu.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Chern-Simons-Witten theory</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 200 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Examples of quantizations; classical solutions of gauge field theory; quantization of Chern-Simons action; Chern-Simons-Witten theory and three manifold invariant; renormalized perturbation series of Chern-Simons-Witten theory; topological sigma model and localization. Appendices: complex manifold without potential theory, S.S. Chern; geometric quantization of Chern-Simons gauge theory, S. Axelrod, S.D. Pietra and E. Witten; on holomorphic factorization of WZW and Coset models, E. Witten.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This work is based on Witten's lectures on topological quantum field theory. Sen Hu has included several appendices providing detals left out of Witten's lectures, and has added two more chapters to update some developments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="b">This monograph has arisen in part from E. Witten's lectures on topological quantum field theory given in the spring of 1989 at Princeton University. At that time, Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials.;In this book, Sen Hu has added material to provide some of the details left out of Witten's lectures and to update some new developments. In Chapter Four he presents a construction of knot invariant via representation of mapping class groups based on the work of Moore-Seiberg and Kohno. In Chapter Six he offers an approach to constructing knot invariant from string theory and topological sigma models proposed by Witten and Vafa.;In addition, relevant material by S.S. Chern and E. Witten has been included as appendices for the convenience of readers.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Gauge fields (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85053534</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometric quantization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054127</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Invariants.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067665</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85135028</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs</subfield><subfield code="x">Mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Quantification géométrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Champs de jauge (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés topologiques à 3 dimensions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariants.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Gauge fields (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric quantization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Three-manifolds (Topology)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Witten, E.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lecture notes on Chern-Simons-Witten theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGBF9B4HkGfg9ywRcfxX7d</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hu, Sen.</subfield><subfield code="t">Lecture notes on Chern-Simons-Witten theory.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, ©2001</subfield><subfield code="w">(DLC) 2001275381</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91478</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91478</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255949</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">91478</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407634</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn646768978 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:15:09Z |
institution | BVB |
isbn | 9812386572 9789812386571 |
language | English |
lccn | 2001275381 |
oclc_num | 646768978 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 200 pages :) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
spelling | Hu, Sen. Lecture notes on Chern-Simons-Witten theory / Sen Hu. Chern-Simons-Witten theory Singapore ; River Edge, NJ : World Scientific, ©2001. 1 online resource (xii, 200 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. Examples of quantizations; classical solutions of gauge field theory; quantization of Chern-Simons action; Chern-Simons-Witten theory and three manifold invariant; renormalized perturbation series of Chern-Simons-Witten theory; topological sigma model and localization. Appendices: complex manifold without potential theory, S.S. Chern; geometric quantization of Chern-Simons gauge theory, S. Axelrod, S.D. Pietra and E. Witten; on holomorphic factorization of WZW and Coset models, E. Witten. This work is based on Witten's lectures on topological quantum field theory. Sen Hu has included several appendices providing detals left out of Witten's lectures, and has added two more chapters to update some developments. This monograph has arisen in part from E. Witten's lectures on topological quantum field theory given in the spring of 1989 at Princeton University. At that time, Witten unified several important mathematical works in terms of quantum field theory, most notably the Donaldson polynomial, the Gromov-Floer homology and the Jones polynomials.;In this book, Sen Hu has added material to provide some of the details left out of Witten's lectures and to update some new developments. In Chapter Four he presents a construction of knot invariant via representation of mapping class groups based on the work of Moore-Seiberg and Kohno. In Chapter Six he offers an approach to constructing knot invariant from string theory and topological sigma models proposed by Witten and Vafa.;In addition, relevant material by S.S. Chern and E. Witten has been included as appendices for the convenience of readers. English. Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Geometric quantization. http://id.loc.gov/authorities/subjects/sh85054127 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Quantum field theory Mathematics. Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Théorie quantique des champs Mathématique. Quantification géométrique. Champs de jauge (Physique) Variétés topologiques à 3 dimensions. Invariants. Théorie quantique des champs Mathématiques. SCIENCE Waves & Wave Mechanics. bisacsh Gauge fields (Physics) fast Geometric quantization fast Invariants fast Quantum field theory Mathematics fast Three-manifolds (Topology) fast Witten, E. has work: Lecture notes on Chern-Simons-Witten theory (Text) https://id.oclc.org/worldcat/entity/E39PCGBF9B4HkGfg9ywRcfxX7d https://id.oclc.org/worldcat/ontology/hasWork Print version: Hu, Sen. Lecture notes on Chern-Simons-Witten theory. Singapore ; River Edge, NJ : World Scientific, ©2001 (DLC) 2001275381 |
spellingShingle | Hu, Sen Lecture notes on Chern-Simons-Witten theory / Examples of quantizations; classical solutions of gauge field theory; quantization of Chern-Simons action; Chern-Simons-Witten theory and three manifold invariant; renormalized perturbation series of Chern-Simons-Witten theory; topological sigma model and localization. Appendices: complex manifold without potential theory, S.S. Chern; geometric quantization of Chern-Simons gauge theory, S. Axelrod, S.D. Pietra and E. Witten; on holomorphic factorization of WZW and Coset models, E. Witten. Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Geometric quantization. http://id.loc.gov/authorities/subjects/sh85054127 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Quantum field theory Mathematics. Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Théorie quantique des champs Mathématique. Quantification géométrique. Champs de jauge (Physique) Variétés topologiques à 3 dimensions. Invariants. Théorie quantique des champs Mathématiques. SCIENCE Waves & Wave Mechanics. bisacsh Gauge fields (Physics) fast Geometric quantization fast Invariants fast Quantum field theory Mathematics fast Three-manifolds (Topology) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85053534 http://id.loc.gov/authorities/subjects/sh85054127 http://id.loc.gov/authorities/subjects/sh85067665 http://id.loc.gov/authorities/subjects/sh85135028 |
title | Lecture notes on Chern-Simons-Witten theory / |
title_alt | Chern-Simons-Witten theory |
title_auth | Lecture notes on Chern-Simons-Witten theory / |
title_exact_search | Lecture notes on Chern-Simons-Witten theory / |
title_full | Lecture notes on Chern-Simons-Witten theory / Sen Hu. |
title_fullStr | Lecture notes on Chern-Simons-Witten theory / Sen Hu. |
title_full_unstemmed | Lecture notes on Chern-Simons-Witten theory / Sen Hu. |
title_short | Lecture notes on Chern-Simons-Witten theory / |
title_sort | lecture notes on chern simons witten theory |
topic | Gauge fields (Physics) http://id.loc.gov/authorities/subjects/sh85053534 Geometric quantization. http://id.loc.gov/authorities/subjects/sh85054127 Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Quantum field theory Mathematics. Three-manifolds (Topology) http://id.loc.gov/authorities/subjects/sh85135028 Théorie quantique des champs Mathématique. Quantification géométrique. Champs de jauge (Physique) Variétés topologiques à 3 dimensions. Invariants. Théorie quantique des champs Mathématiques. SCIENCE Waves & Wave Mechanics. bisacsh Gauge fields (Physics) fast Geometric quantization fast Invariants fast Quantum field theory Mathematics fast Three-manifolds (Topology) fast |
topic_facet | Gauge fields (Physics) Geometric quantization. Invariants. Quantum field theory Mathematics. Three-manifolds (Topology) Théorie quantique des champs Mathématique. Quantification géométrique. Champs de jauge (Physique) Variétés topologiques à 3 dimensions. Théorie quantique des champs Mathématiques. SCIENCE Waves & Wave Mechanics. Geometric quantization Invariants Quantum field theory Mathematics |
work_keys_str_mv | AT husen lecturenotesonchernsimonswittentheory AT wittene lecturenotesonchernsimonswittentheory AT husen chernsimonswittentheory AT wittene chernsimonswittentheory |