The solution of the k(GV) problem /:
The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup o...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Singapore ; Hackensack, NJ :
Imperial College Press ; Distributed by World Scientific Pub.,
©2007.
|
Schriftenreihe: | Imperial College Press advanced texts in mathematics ;
v. 4. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut. |
Beschreibung: | 1 online resource (xiv, 232 pages). |
Bibliographie: | Includes bibliographical references (pages 225-229) and index. |
ISBN: | 9781860949715 1860949711 1281869465 9781281869463 9786611869465 6611869468 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646768730 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070920s2007 enk ob 001 0 eng d | ||
010 | |z 2007039136 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d IDEBK |d OCLCQ |d OCLCO |d RBN |d OCLCF |d OCLCQ |d YDXCP |d STF |d OCLCQ |d LOA |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d OCLCQ |d COO |d WRM |d OCLCQ |d VTS |d NRAMU |d VT2 |d OCLCQ |d WYU |d LEAUB |d UKAHL |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 262524052 |a 767137939 |a 769365676 |a 1162187451 |a 1241829211 |a 1290117323 |a 1300653053 | ||
020 | |a 9781860949715 |q (electronic bk.) | ||
020 | |a 1860949711 |q (electronic bk.) | ||
020 | |z 9781860949708 |q (hardcover ; |q alk. paper) | ||
020 | |z 1860949703 |q (hardcover ; |q alk. paper) | ||
020 | |a 1281869465 | ||
020 | |a 9781281869463 | ||
020 | |a 9786611869465 | ||
020 | |a 6611869468 | ||
035 | |a (OCoLC)646768730 |z (OCoLC)262524052 |z (OCoLC)767137939 |z (OCoLC)769365676 |z (OCoLC)1162187451 |z (OCoLC)1241829211 |z (OCoLC)1290117323 |z (OCoLC)1300653053 | ||
050 | 4 | |a QA353.K47 |b S36 2007eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515/.7223 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Schmid, Peter, |d 1941- |1 https://id.oclc.org/worldcat/entity/E39PCjDk6vhQvj8DTVf7g8bKMK |0 http://id.loc.gov/authorities/names/n2007068092 | |
245 | 1 | 4 | |a The solution of the k(GV) problem / |c Peter Schmid. |
260 | |a London : |b Imperial College Press ; |a Singapore ; |a Hackensack, NJ : |b Distributed by World Scientific Pub., |c ©2007. | ||
300 | |a 1 online resource (xiv, 232 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a ICP advanced texts in mathematics ; |v v. 4 | |
504 | |a Includes bibliographical references (pages 225-229) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) = | |
520 | |a The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut. | ||
546 | |a English. | ||
650 | 0 | |a Kernel functions. |0 http://id.loc.gov/authorities/subjects/sh85072061 | |
650 | 6 | |a Noyaux (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Kernel functions |2 fast | |
710 | 2 | |a Imperial College of Science, Technology and Medicine. |0 http://id.loc.gov/authorities/names/n89624734 | |
776 | 0 | 8 | |i Print version: |a Schmid, Peter, 1941- |t Solution of the k(GV) problem. |d London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., ©2007 |w (DLC) 2007039136 |
830 | 0 | |a Imperial College Press advanced texts in mathematics ; |v v. 4. |0 http://id.loc.gov/authorities/names/no2007087803 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236042 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24683116 | ||
938 | |a ebrary |b EBRY |n ebr10255784 | ||
938 | |a EBSCOhost |b EBSC |n 236042 | ||
938 | |a YBP Library Services |b YANK |n 2891818 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646768730 |
---|---|
_version_ | 1816881725261742080 |
adam_text | |
any_adam_object | |
author | Schmid, Peter, 1941- |
author_GND | http://id.loc.gov/authorities/names/n2007068092 |
author_corporate | Imperial College of Science, Technology and Medicine |
author_corporate_role | |
author_facet | Schmid, Peter, 1941- Imperial College of Science, Technology and Medicine |
author_role | |
author_sort | Schmid, Peter, 1941- |
author_variant | p s ps |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA353 |
callnumber-raw | QA353.K47 S36 2007eb |
callnumber-search | QA353.K47 S36 2007eb |
callnumber-sort | QA 3353 K47 S36 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) = |
ctrlnum | (OCoLC)646768730 |
dewey-full | 515/.7223 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7223 |
dewey-search | 515/.7223 |
dewey-sort | 3515 47223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03977cam a2200601Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646768730</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070920s2007 enk ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007039136</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">RBN</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">262524052</subfield><subfield code="a">767137939</subfield><subfield code="a">769365676</subfield><subfield code="a">1162187451</subfield><subfield code="a">1241829211</subfield><subfield code="a">1290117323</subfield><subfield code="a">1300653053</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781860949715</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1860949711</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860949708</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1860949703</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281869465</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281869463</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611869465</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611869468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646768730</subfield><subfield code="z">(OCoLC)262524052</subfield><subfield code="z">(OCoLC)767137939</subfield><subfield code="z">(OCoLC)769365676</subfield><subfield code="z">(OCoLC)1162187451</subfield><subfield code="z">(OCoLC)1241829211</subfield><subfield code="z">(OCoLC)1290117323</subfield><subfield code="z">(OCoLC)1300653053</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA353.K47</subfield><subfield code="b">S36 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.7223</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmid, Peter,</subfield><subfield code="d">1941-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDk6vhQvj8DTVf7g8bKMK</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2007068092</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The solution of the k(GV) problem /</subfield><subfield code="c">Peter Schmid.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">Distributed by World Scientific Pub.,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 232 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ICP advanced texts in mathematics ;</subfield><subfield code="v">v. 4</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 225-229) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) =</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Kernel functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85072061</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Noyaux (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kernel functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Imperial College of Science, Technology and Medicine.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89624734</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Schmid, Peter, 1941-</subfield><subfield code="t">Solution of the k(GV) problem.</subfield><subfield code="d">London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., ©2007</subfield><subfield code="w">(DLC) 2007039136</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press advanced texts in mathematics ;</subfield><subfield code="v">v. 4.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007087803</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236042</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24683116</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255784</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">236042</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2891818</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn646768730 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:17Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n89624734 |
isbn | 9781860949715 1860949711 1281869465 9781281869463 9786611869465 6611869468 |
language | English |
oclc_num | 646768730 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiv, 232 pages). |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Imperial College Press ; Distributed by World Scientific Pub., |
record_format | marc |
series | Imperial College Press advanced texts in mathematics ; |
series2 | ICP advanced texts in mathematics ; |
spelling | Schmid, Peter, 1941- https://id.oclc.org/worldcat/entity/E39PCjDk6vhQvj8DTVf7g8bKMK http://id.loc.gov/authorities/names/n2007068092 The solution of the k(GV) problem / Peter Schmid. London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., ©2007. 1 online resource (xiv, 232 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier ICP advanced texts in mathematics ; v. 4 Includes bibliographical references (pages 225-229) and index. Print version record. 1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) = The <i>k(GV)</i> conjecture claims that the number of conjugacy classes (irreducible characters) of the semidirect product <i>GV</i> is bounded above by the order of <i>V</i>. Here <i>V</i> is a finite vector space and <i>G</i> a subgroup of <i>GL(V)</i> of order prime to that of <i>V</i>. It may be regarded as the special case of Brauer's celebrated <i>k(B)</i> problem dealing with <i>p</i>-blocks <i>B</i> of p-solvable groups (<i>p</i> a prime). Whereas Brauer's problem is still open in its generality, the <i>k(GV)</i> problem has recently been solved, completing the work of a series of aut. English. Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Noyaux (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Kernel functions fast Imperial College of Science, Technology and Medicine. http://id.loc.gov/authorities/names/n89624734 Print version: Schmid, Peter, 1941- Solution of the k(GV) problem. London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., ©2007 (DLC) 2007039136 Imperial College Press advanced texts in mathematics ; v. 4. http://id.loc.gov/authorities/names/no2007087803 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236042 Volltext |
spellingShingle | Schmid, Peter, 1941- The solution of the k(GV) problem / Imperial College Press advanced texts in mathematics ; 1. Conjugacy classes, characters, and Clifford Theory -- 2. Blocks of characters and Brauer's k(B) problem -- 3. The k(GV) problem -- 4. Symplectic and orthogonal modules -- 5. Real vectors -- 6. Reduced pairs of extraspecial type -- 7. Reduced pairs of quasisimple type -- 8. Modules without real vectors -- 9. Class numbers of permutation groups -- 10. The final stages of the proof -- 11. Possibilities for k(GV) = Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Noyaux (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Kernel functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85072061 |
title | The solution of the k(GV) problem / |
title_auth | The solution of the k(GV) problem / |
title_exact_search | The solution of the k(GV) problem / |
title_full | The solution of the k(GV) problem / Peter Schmid. |
title_fullStr | The solution of the k(GV) problem / Peter Schmid. |
title_full_unstemmed | The solution of the k(GV) problem / Peter Schmid. |
title_short | The solution of the k(GV) problem / |
title_sort | solution of the k gv problem |
topic | Kernel functions. http://id.loc.gov/authorities/subjects/sh85072061 Noyaux (Mathématiques) MATHEMATICS Functional Analysis. bisacsh Kernel functions fast |
topic_facet | Kernel functions. Noyaux (Mathématiques) MATHEMATICS Functional Analysis. Kernel functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=236042 |
work_keys_str_mv | AT schmidpeter thesolutionofthekgvproblem AT imperialcollegeofsciencetechnologyandmedicine thesolutionofthekgvproblem AT schmidpeter solutionofthekgvproblem AT imperialcollegeofsciencetechnologyandmedicine solutionofthekgvproblem |