Lectures on Chern-Weil theory and Witten deformations /:
This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and Andr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scientific,
©2001.
|
Schriftenreihe: | Nankai tracts in mathematics ;
v. 4. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. |
Beschreibung: | 1 online resource (xi, 117 pages.) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812386580 9789812386588 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646768373 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 010823s2001 nju ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d HVC |d N$T |d YDXCP |d OCLCQ |d ZCU |d OCLCO |d IDEBK |d OCLCF |d OCLCQ |d SLY |d OCLCQ |d STF |d OCLCQ |d LOA |d AZK |d AGLDB |d COCUF |d MOR |d CCO |d PIFAG |d VGM |d OCLCQ |d WRM |d VTS |d NRAMU |d VT2 |d OCLCQ |d WYU |d LEAUB |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d INARC |d OCLCQ | ||
019 | |a 52854666 |a 505147571 |a 764499667 |a 880303047 |a 961533369 |a 962630609 | ||
020 | |a 9812386580 |q (electronic bk.) | ||
020 | |a 9789812386588 |q (electronic bk.) | ||
020 | |z 9789810246853 | ||
020 | |z 9810246854 | ||
020 | |z 9810246862 |q (pbk.) | ||
035 | |a (OCoLC)646768373 |z (OCoLC)52854666 |z (OCoLC)505147571 |z (OCoLC)764499667 |z (OCoLC)880303047 |z (OCoLC)961533369 |z (OCoLC)962630609 | ||
050 | 4 | |a QA613.618 |b .Z43 2001eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.72 |2 21 | |
084 | |a O177. 3 |2 clc | ||
049 | |a MAIN | ||
100 | 1 | |a Zhang, Weiping, |d 1964- |0 http://id.loc.gov/authorities/names/n2007071188 | |
245 | 1 | 0 | |a Lectures on Chern-Weil theory and Witten deformations / |c Weiping Zhang. |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2001. | ||
300 | |a 1 online resource (xi, 117 pages.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Nankai tracts in mathematics ; |v 4 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. | |
520 | |a This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. | ||
650 | 0 | |a Chern classes. |0 http://id.loc.gov/authorities/subjects/sh97008471 | |
650 | 0 | |a Index theorems. |0 http://id.loc.gov/authorities/subjects/sh85064860 | |
650 | 0 | |a Complexes. |0 http://id.loc.gov/authorities/subjects/sh85029372 | |
650 | 6 | |a Classes de Chern. | |
650 | 6 | |a Théorèmes d'indices. | |
650 | 6 | |a Complexes (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 0 | 7 | |a Index theorems. |2 cct |
650 | 0 | 7 | |a Complexes. |2 cct |
650 | 0 | 7 | |a Chern classes. |2 cct |
650 | 7 | |a Chern classes |2 fast | |
650 | 7 | |a Complexes |2 fast | |
650 | 7 | |a Index theorems |2 fast | |
776 | 0 | 8 | |i Print version: |a Zhang, Weiping. |t Lectures on Chern-Weil theory and Witten deformations. |d River Edge, N.J. : World Scientific, ©2001 |w (DLC) 2001046629 |
830 | 0 | |a Nankai tracts in mathematics ; |v v. 4. |0 http://id.loc.gov/authorities/names/n2001000055 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479 |3 Volltext | |
938 | |a Internet Archive |b INAR |n lecturesonchernw0000zhan | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH21189854 | ||
938 | |a ebrary |b EBRY |n ebr10255555 | ||
938 | |a EBSCOhost |b EBSC |n 91479 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26426428 | ||
938 | |a YBP Library Services |b YANK |n 2407635 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646768373 |
---|---|
_version_ | 1813903369672065024 |
adam_text | |
any_adam_object | |
author | Zhang, Weiping, 1964- |
author_GND | http://id.loc.gov/authorities/names/n2007071188 |
author_facet | Zhang, Weiping, 1964- |
author_role | |
author_sort | Zhang, Weiping, 1964- |
author_variant | w z wz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.618 .Z43 2001eb |
callnumber-search | QA613.618 .Z43 2001eb |
callnumber-sort | QA 3613.618 Z43 42001EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. |
ctrlnum | (OCoLC)646768373 |
dewey-full | 514/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.72 |
dewey-search | 514/.72 |
dewey-sort | 3514 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05597cam a2200673Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646768373</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">010823s2001 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HVC</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">52854666</subfield><subfield code="a">505147571</subfield><subfield code="a">764499667</subfield><subfield code="a">880303047</subfield><subfield code="a">961533369</subfield><subfield code="a">962630609</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812386580</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812386588</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810246853</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810246854</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810246862</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646768373</subfield><subfield code="z">(OCoLC)52854666</subfield><subfield code="z">(OCoLC)505147571</subfield><subfield code="z">(OCoLC)764499667</subfield><subfield code="z">(OCoLC)880303047</subfield><subfield code="z">(OCoLC)961533369</subfield><subfield code="z">(OCoLC)962630609</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA613.618</subfield><subfield code="b">.Z43 2001eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.72</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">O177. 3</subfield><subfield code="2">clc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Weiping,</subfield><subfield code="d">1964-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2007071188</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Chern-Weil theory and Witten deformations /</subfield><subfield code="c">Weiping Zhang.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2001.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 117 pages.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">4</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chern classes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97008471</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Index theorems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85064860</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Complexes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029372</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Classes de Chern.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorèmes d'indices.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Complexes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Index theorems.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Complexes.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chern classes.</subfield><subfield code="2">cct</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chern classes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complexes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Index theorems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zhang, Weiping.</subfield><subfield code="t">Lectures on Chern-Weil theory and Witten deformations.</subfield><subfield code="d">River Edge, N.J. : World Scientific, ©2001</subfield><subfield code="w">(DLC) 2001046629</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Nankai tracts in mathematics ;</subfield><subfield code="v">v. 4.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001000055</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">lecturesonchernw0000zhan</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21189854</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255555</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">91479</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26426428</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407635</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn646768373 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:17:35Z |
institution | BVB |
isbn | 9812386580 9789812386588 |
language | English |
oclc_num | 646768373 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xi, 117 pages.) |
psigel | ZDB-4-EBA |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | World Scientific, |
record_format | marc |
series | Nankai tracts in mathematics ; |
series2 | Nankai tracts in mathematics ; |
spelling | Zhang, Weiping, 1964- http://id.loc.gov/authorities/names/n2007071188 Lectures on Chern-Weil theory and Witten deformations / Weiping Zhang. River Edge, N.J. : World Scientific, ©2001. 1 online resource (xi, 117 pages.) text txt rdacontent computer c rdamedia online resource cr rdacarrier Nankai tracts in mathematics ; 4 Includes bibliographical references and index. Print version record. Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. This invaluable book is based on the notes of a graduate course on differential geometry which the author gave at the Nankai Institute of Mathematics. It consists of two parts: the first part contains an introduction to the geometric theory of characteristic classes due to Shiing-shen Chern and André Weil, as well as a proof of the Gauss-Bonnet-Chern theorem based on the Mathai-Quillen construction of Thom forms; the second part presents analytic proofs of the Poincaré-Hopf index formula, as well as the Morse inequalities based on deformations introduced by Edward Witten. Chern classes. http://id.loc.gov/authorities/subjects/sh97008471 Index theorems. http://id.loc.gov/authorities/subjects/sh85064860 Complexes. http://id.loc.gov/authorities/subjects/sh85029372 Classes de Chern. Théorèmes d'indices. Complexes (Mathématiques) MATHEMATICS Topology. bisacsh Index theorems. cct Complexes. cct Chern classes. cct Chern classes fast Complexes fast Index theorems fast Print version: Zhang, Weiping. Lectures on Chern-Weil theory and Witten deformations. River Edge, N.J. : World Scientific, ©2001 (DLC) 2001046629 Nankai tracts in mathematics ; v. 4. http://id.loc.gov/authorities/names/n2001000055 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479 Volltext |
spellingShingle | Zhang, Weiping, 1964- Lectures on Chern-Weil theory and Witten deformations / Nankai tracts in mathematics ; Ch. 1. Chern-Weil theory for characteristic classes. 1.1. Review of the de Rham cohomology theory. 1.2. Connections on vector bundles. 1.3. The curvature of a connection. 1.4. Chern-Weil theorem. 1.5. Characteristic forms, classes and numbers. 1.6. Some examples. 1.7. Bott vanishing theorem for foliations. 1.8. Chern-Weil theory in odd dimension. 1.9. References -- ch. 2. Bott and Duistermaat-Heckman formulas. 2.1. Berline-Vergne localization formula. 2.2. Bott residue formula. 2.3. Duistermaat-Heckman formula. 2.4. Bott's original idea. 2.5. References -- ch. 3. Gauss-Bonnet-Chern theorem. 3.1. A toy model and the Berezin integral. 3.2. Mathai-Quillen's Thom form. 3.3. A transgression formula. 3.4. Proof of the Gauss-Bonnet-Chern theorem. 3.5. Some remarks. 3.6. Chern's original proof. 3.7. References -- ch. 4. Poincaré-Hopf index formula: an analytic proof. 4.1. Review of Hodge theorem. 4.2. Poincaré-Hopf index formula. 4.3. Clifford actions and the Witten deformation. 4.4. An estimate outside of [symbol]. 4.5. Harmonic oscillators on Euclidean spaces. 4.6. A proof of the Poincaré-Hopf index formula. 4.7. Some estimates for [symbol]. 4.8. An alternate analytic proof. 4.9. References -- ch. 5. Morse inequalities: an analytic proof. 5.1. Review of Morse inequalities. 5.2. Witten deformation. 5.3. Hodge theorem for ([symbol]). 5.4. Behaviour of [symbol] near the critical points of f. 5.5. Proof of Morse inequalities. 5.6. Proof of proposition 5.5. 5.7. Some remarks and comments. 5.8. References -- ch. 6. Thom-Smale and Witten complexes. 6.1. The Thorn-Smale complex. 6.2. The de Rham map for Thom-Smale complexes. 6.3. Witten's instanton complex and the map [symbol]. 6.4. The map [symbol]. 6.5. An analytic proof of theorem 6.4. 6.6. References -- ch. 7. Atiyah theorem on Kervaire semi-characteristic. 7.1. Kervaire semi-characteristic. 7.2. Atiyah's original proof. 7.3. A proof via Witten deformation. 7.4. A generic counting formula for k(M). 7.5. Non-multiplicativity of k(M). 7.6. References. Chern classes. http://id.loc.gov/authorities/subjects/sh97008471 Index theorems. http://id.loc.gov/authorities/subjects/sh85064860 Complexes. http://id.loc.gov/authorities/subjects/sh85029372 Classes de Chern. Théorèmes d'indices. Complexes (Mathématiques) MATHEMATICS Topology. bisacsh Index theorems. cct Complexes. cct Chern classes. cct Chern classes fast Complexes fast Index theorems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh97008471 http://id.loc.gov/authorities/subjects/sh85064860 http://id.loc.gov/authorities/subjects/sh85029372 |
title | Lectures on Chern-Weil theory and Witten deformations / |
title_auth | Lectures on Chern-Weil theory and Witten deformations / |
title_exact_search | Lectures on Chern-Weil theory and Witten deformations / |
title_full | Lectures on Chern-Weil theory and Witten deformations / Weiping Zhang. |
title_fullStr | Lectures on Chern-Weil theory and Witten deformations / Weiping Zhang. |
title_full_unstemmed | Lectures on Chern-Weil theory and Witten deformations / Weiping Zhang. |
title_short | Lectures on Chern-Weil theory and Witten deformations / |
title_sort | lectures on chern weil theory and witten deformations |
topic | Chern classes. http://id.loc.gov/authorities/subjects/sh97008471 Index theorems. http://id.loc.gov/authorities/subjects/sh85064860 Complexes. http://id.loc.gov/authorities/subjects/sh85029372 Classes de Chern. Théorèmes d'indices. Complexes (Mathématiques) MATHEMATICS Topology. bisacsh Index theorems. cct Complexes. cct Chern classes. cct Chern classes fast Complexes fast Index theorems fast |
topic_facet | Chern classes. Index theorems. Complexes. Classes de Chern. Théorèmes d'indices. Complexes (Mathématiques) MATHEMATICS Topology. Chern classes Complexes Index theorems |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=91479 |
work_keys_str_mv | AT zhangweiping lecturesonchernweiltheoryandwittendeformations |