Lectures on the geometry of manifolds /:
"The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2007.
|
Ausgabe: | 2nd ed. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | "The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology. The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue. While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem. We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators. The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight." |
Beschreibung: | 1 online resource (xvii, 589 pages :) |
Bibliographie: | Includes bibliographical references (pages 579-582) and index. |
ISBN: | 9789812770295 9812770291 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646768317 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070618s2007 njua ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d YDXCP |d OSU |d IDEBK |d OCLCQ |d OCLCF |d OCLCQ |d STF |d EBLCP |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d AJS |d SGP |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 271794153 |a 300205742 |a 961537169 |a 962678637 |a 988430130 |a 991915810 |a 1037901342 |a 1038693342 |a 1045478961 |a 1055327538 |a 1058170497 |a 1062887273 |a 1081226166 | ||
020 | |a 9789812770295 |q (electronic bk.) | ||
020 | |a 9812770291 |q (electronic bk.) | ||
020 | |z 9789812708533 |q (hardcover ; |q alk. paper) | ||
020 | |z 9812708537 |q (hardcover ; |q alk. paper) | ||
020 | |z 9789812778628 |q (pbk.) | ||
020 | |z 9812778624 |q (pbk.) | ||
035 | |a (OCoLC)646768317 |z (OCoLC)271794153 |z (OCoLC)300205742 |z (OCoLC)961537169 |z (OCoLC)962678637 |z (OCoLC)988430130 |z (OCoLC)991915810 |z (OCoLC)1037901342 |z (OCoLC)1038693342 |z (OCoLC)1045478961 |z (OCoLC)1055327538 |z (OCoLC)1058170497 |z (OCoLC)1062887273 |z (OCoLC)1081226166 | ||
050 | 4 | |a QA649 |b .N53 2007eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.3/62 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Nicolaescu, Liviu I. |0 http://id.loc.gov/authorities/names/n96057528 | |
245 | 1 | 0 | |a Lectures on the geometry of manifolds / |c by Liviu I. Nicolaescu. |
250 | |a 2nd ed. | ||
260 | |a New Jersey : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (xvii, 589 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 579-582) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction -- 2. Natural constructions on manifolds -- 3. Calculus on manifolds -- 4. Riemannian geometry -- 5. Elements of the calculus of variations -- 6. The fundamental group and covering spaces -- 7. Cohomology -- 8. Characteristic classes -- 9. Classical integral geometry -- 10. Elliptic equations on manifolds -- 11. Dirac operators. | |
520 | |a "The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology. The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue. While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem. We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators. The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight." | ||
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
776 | 0 | 8 | |i Print version: |a Nicolaescu, Liviu I. |t Lectures on the geometry of manifolds. |b 2nd ed. |d New Jersey : World Scientific, ©2007 |w (DLC) 2007025469 |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235973 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235973 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684241 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3050882 | ||
938 | |a ebrary |b EBRY |n ebr10255518 | ||
938 | |a EBSCOhost |b EBSC |n 235973 | ||
938 | |a YBP Library Services |b YANK |n 2901904 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646768317 |
---|---|
_version_ | 1826941629118808064 |
adam_text | |
any_adam_object | |
author | Nicolaescu, Liviu I. |
author_GND | http://id.loc.gov/authorities/names/n96057528 |
author_facet | Nicolaescu, Liviu I. |
author_role | |
author_sort | Nicolaescu, Liviu I. |
author_variant | l i n li lin |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .N53 2007eb |
callnumber-search | QA649 .N53 2007eb |
callnumber-sort | QA 3649 N53 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. Natural constructions on manifolds -- 3. Calculus on manifolds -- 4. Riemannian geometry -- 5. Elements of the calculus of variations -- 6. The fundamental group and covering spaces -- 7. Cohomology -- 8. Characteristic classes -- 9. Classical integral geometry -- 10. Elliptic equations on manifolds -- 11. Dirac operators. |
ctrlnum | (OCoLC)646768317 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04872cam a2200577Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646768317</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070618s2007 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OSU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">271794153</subfield><subfield code="a">300205742</subfield><subfield code="a">961537169</subfield><subfield code="a">962678637</subfield><subfield code="a">988430130</subfield><subfield code="a">991915810</subfield><subfield code="a">1037901342</subfield><subfield code="a">1038693342</subfield><subfield code="a">1045478961</subfield><subfield code="a">1055327538</subfield><subfield code="a">1058170497</subfield><subfield code="a">1062887273</subfield><subfield code="a">1081226166</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812770295</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812770291</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812708533</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812708537</subfield><subfield code="q">(hardcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812778628</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812778624</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646768317</subfield><subfield code="z">(OCoLC)271794153</subfield><subfield code="z">(OCoLC)300205742</subfield><subfield code="z">(OCoLC)961537169</subfield><subfield code="z">(OCoLC)962678637</subfield><subfield code="z">(OCoLC)988430130</subfield><subfield code="z">(OCoLC)991915810</subfield><subfield code="z">(OCoLC)1037901342</subfield><subfield code="z">(OCoLC)1038693342</subfield><subfield code="z">(OCoLC)1045478961</subfield><subfield code="z">(OCoLC)1055327538</subfield><subfield code="z">(OCoLC)1058170497</subfield><subfield code="z">(OCoLC)1062887273</subfield><subfield code="z">(OCoLC)1081226166</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.N53 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nicolaescu, Liviu I.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96057528</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the geometry of manifolds /</subfield><subfield code="c">by Liviu I. Nicolaescu.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 589 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 579-582) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. Natural constructions on manifolds -- 3. Calculus on manifolds -- 4. Riemannian geometry -- 5. Elements of the calculus of variations -- 6. The fundamental group and covering spaces -- 7. Cohomology -- 8. Characteristic classes -- 9. Classical integral geometry -- 10. Elliptic equations on manifolds -- 11. Dirac operators.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology. The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue. While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem. We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators. The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight."</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nicolaescu, Liviu I.</subfield><subfield code="t">Lectures on the geometry of manifolds.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">New Jersey : World Scientific, ©2007</subfield><subfield code="w">(DLC) 2007025469</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235973</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=235973</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684241</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3050882</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10255518</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">235973</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2901904</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn646768317 |
illustrated | Illustrated |
indexdate | 2025-03-18T14:15:09Z |
institution | BVB |
isbn | 9789812770295 9812770291 |
language | English |
oclc_num | 646768317 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 589 pages :) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
spelling | Nicolaescu, Liviu I. http://id.loc.gov/authorities/names/n96057528 Lectures on the geometry of manifolds / by Liviu I. Nicolaescu. 2nd ed. New Jersey : World Scientific, ©2007. 1 online resource (xvii, 589 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 579-582) and index. Print version record. 1. Introduction -- 2. Natural constructions on manifolds -- 3. Calculus on manifolds -- 4. Riemannian geometry -- 5. Elements of the calculus of variations -- 6. The fundamental group and covering spaces -- 7. Cohomology -- 8. Characteristic classes -- 9. Classical integral geometry -- 10. Elliptic equations on manifolds -- 11. Dirac operators. "The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology. The book's guiding philosophy is, in the words of Newton, that "in learning the sciences examples are of more use than precepts". We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue. While we present most of the local aspects of classical differential geometry, the book has a "global and analytical bias". We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem. We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators. The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight." Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast Print version: Nicolaescu, Liviu I. Lectures on the geometry of manifolds. 2nd ed. New Jersey : World Scientific, ©2007 (DLC) 2007025469 |
spellingShingle | Nicolaescu, Liviu I. Lectures on the geometry of manifolds / 1. Introduction -- 2. Natural constructions on manifolds -- 3. Calculus on manifolds -- 4. Riemannian geometry -- 5. Elements of the calculus of variations -- 6. The fundamental group and covering spaces -- 7. Cohomology -- 8. Characteristic classes -- 9. Classical integral geometry -- 10. Elliptic equations on manifolds -- 11. Dirac operators. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85080549 |
title | Lectures on the geometry of manifolds / |
title_auth | Lectures on the geometry of manifolds / |
title_exact_search | Lectures on the geometry of manifolds / |
title_full | Lectures on the geometry of manifolds / by Liviu I. Nicolaescu. |
title_fullStr | Lectures on the geometry of manifolds / by Liviu I. Nicolaescu. |
title_full_unstemmed | Lectures on the geometry of manifolds / by Liviu I. Nicolaescu. |
title_short | Lectures on the geometry of manifolds / |
title_sort | lectures on the geometry of manifolds |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast |
topic_facet | Geometry, Differential. Manifolds (Mathematics) Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. Geometry, Differential |
work_keys_str_mv | AT nicolaesculiviui lecturesonthegeometryofmanifolds |