Synthetic geometry of manifolds /:
"This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©2010.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
180. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field"--Provided by publisher. "This book deals with a certain aspect of the theory of smoothmanifolds, namely (for each k) the kth neigbourhood of the diagonal. A part of the theory presented here also applies in algebraic geometry (smooth schemes). The neighbourhoods of the diagonal are classical mathematical objects. In the context of algebraic geometry, they were introduced by the Grothendieck school in the early 1960s; the Grothendieck ideas were imported into the context of smooth manifolds by Malgrange, Kumpera and Spencer, and others. Kumpera and Spencer call them "prolongation spaces of order k". The study of these spaces has previously been forced to be rather technical, because the prolongation spaces are not themselves manifolds, but live in a wider category of "spaces", which has to be described. For the case of algebraic geometry, one passes from the category of varieties to the wider category of schemes; for the smooth case, Malgrange, Kumpera and Spencer, and others described a category of "generalized differentiablemanifolds with nilpotent elements" (Kumpera and Spencer, 1973, p. 54)"--Provided by publisher. |
Beschreibung: | 1 online resource (xiii, 302 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 293-297) and index. |
ISBN: | 9780511691096 0511691092 9780511692215 0511692218 9780511691690 0511691696 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn646069159 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 100706s2010 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OSU |d YDXCP |d OCLCQ |d UKMGB |d OCLCQ |d OCLCF |d AUD |d OCLCQ |d HEBIS |d OCLCO |d OCLCA |d UAB |d OCLCQ |d INT |d OCLCQ |d AU@ |d OCLCO |d OCLCQ |d K6U |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d SFB | ||
016 | 7 | |a 015506477 |2 Uk | |
019 | |a 776972641 | ||
020 | |a 9780511691096 |q (electronic bk.) | ||
020 | |a 0511691092 |q (electronic bk.) | ||
020 | |a 9780511692215 |q (ebook) | ||
020 | |a 0511692218 |q (ebook) | ||
020 | |a 9780511691690 |q (ebook) | ||
020 | |a 0511691696 |q (ebook) | ||
020 | |z 9780521116732 |q (hardback) | ||
020 | |z 0521116732 |q (hardback) | ||
035 | |a (OCoLC)646069159 |z (OCoLC)776972641 | ||
050 | 4 | |a QA641 |b .K735 2010eb | |
072 | 7 | |a MAT |x 012030 |2 bisacsh | |
082 | 7 | |a 516.3/62 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Kock, Anders. |0 http://id.loc.gov/authorities/names/n89669082 | |
245 | 1 | 0 | |a Synthetic geometry of manifolds / |c Anders Kock. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©2010. | ||
300 | |a 1 online resource (xiii, 302 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 180 | |
520 | |a "This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field"--Provided by publisher. | ||
520 | |a "This book deals with a certain aspect of the theory of smoothmanifolds, namely (for each k) the kth neigbourhood of the diagonal. A part of the theory presented here also applies in algebraic geometry (smooth schemes). The neighbourhoods of the diagonal are classical mathematical objects. In the context of algebraic geometry, they were introduced by the Grothendieck school in the early 1960s; the Grothendieck ideas were imported into the context of smooth manifolds by Malgrange, Kumpera and Spencer, and others. Kumpera and Spencer call them "prolongation spaces of order k". The study of these spaces has previously been forced to be rather technical, because the prolongation spaces are not themselves manifolds, but live in a wider category of "spaces", which has to be described. For the case of algebraic geometry, one passes from the category of varieties to the wider category of schemes; for the smooth case, Malgrange, Kumpera and Spencer, and others described a category of "generalized differentiablemanifolds with nilpotent elements" (Kumpera and Spencer, 1973, p. 54)"--Provided by publisher. | ||
504 | |a Includes bibliographical references (pages 293-297) and index. | ||
505 | 0 | |a Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Differentialgeometrie |2 gnd |0 http://d-nb.info/gnd/4012248-7 | |
650 | 7 | |a Mannigfaltigkeit |2 gnd | |
650 | 7 | |a Differenzierbare Mannigfaltigkeit |2 gnd |0 http://d-nb.info/gnd/4012269-4 | |
650 | 7 | |a Synthetische Differentialgeometrie |2 gnd |0 http://d-nb.info/gnd/4462361-6 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
758 | |i has work: |a Synthetic geometry of manifolds (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFYP7pFtd8tBvKRqtxYtXb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kock, Anders. |t Synthetic geometry of manifolds. |d New York : Cambridge University Press, ©2010 |z 9780521116732 |w (DLC) 2009038164 |w (OCoLC)401146707 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 180. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=318404 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13429235 | ||
938 | |a EBSCOhost |b EBSC |n 318404 | ||
938 | |a YBP Library Services |b YANK |n 3335955 | ||
938 | |a YBP Library Services |b YANK |n 3335167 | ||
938 | |a YBP Library Services |b YANK |n 3371034 | ||
938 | |a YBP Library Services |b YANK |n 3582443 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn646069159 |
---|---|
_version_ | 1816881724472164352 |
adam_text | |
any_adam_object | |
author | Kock, Anders |
author_GND | http://id.loc.gov/authorities/names/n89669082 |
author_facet | Kock, Anders |
author_role | |
author_sort | Kock, Anders |
author_variant | a k ak |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 .K735 2010eb |
callnumber-search | QA641 .K735 2010eb |
callnumber-sort | QA 3641 K735 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions. |
ctrlnum | (OCoLC)646069159 |
dewey-full | 516.3/62 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/62 |
dewey-search | 516.3/62 |
dewey-sort | 3516.3 262 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05696cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn646069159</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">100706s2010 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OSU</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AUD</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015506477</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">776972641</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511691096</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511691092</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511692215</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511692218</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511691690</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511691696</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521116732</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521116732</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)646069159</subfield><subfield code="z">(OCoLC)776972641</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA641</subfield><subfield code="b">.K735 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/62</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kock, Anders.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89669082</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthetic geometry of manifolds /</subfield><subfield code="c">Anders Kock.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 302 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">180</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field"--Provided by publisher.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book deals with a certain aspect of the theory of smoothmanifolds, namely (for each k) the kth neigbourhood of the diagonal. A part of the theory presented here also applies in algebraic geometry (smooth schemes). The neighbourhoods of the diagonal are classical mathematical objects. In the context of algebraic geometry, they were introduced by the Grothendieck school in the early 1960s; the Grothendieck ideas were imported into the context of smooth manifolds by Malgrange, Kumpera and Spencer, and others. Kumpera and Spencer call them "prolongation spaces of order k". The study of these spaces has previously been forced to be rather technical, because the prolongation spaces are not themselves manifolds, but live in a wider category of "spaces", which has to be described. For the case of algebraic geometry, one passes from the category of varieties to the wider category of schemes; for the smooth case, Malgrange, Kumpera and Spencer, and others described a category of "generalized differentiablemanifolds with nilpotent elements" (Kumpera and Spencer, 1973, p. 54)"--Provided by publisher.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 293-297) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4012248-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4012269-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Synthetische Differentialgeometrie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4462361-6</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Synthetic geometry of manifolds (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFYP7pFtd8tBvKRqtxYtXb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kock, Anders.</subfield><subfield code="t">Synthetic geometry of manifolds.</subfield><subfield code="d">New York : Cambridge University Press, ©2010</subfield><subfield code="z">9780521116732</subfield><subfield code="w">(DLC) 2009038164</subfield><subfield code="w">(OCoLC)401146707</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">180.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=318404</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13429235</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">318404</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3335955</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3335167</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3371034</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3582443</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn646069159 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:16Z |
institution | BVB |
isbn | 9780511691096 0511691092 9780511692215 0511692218 9780511691690 0511691696 |
language | English |
oclc_num | 646069159 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 302 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Kock, Anders. http://id.loc.gov/authorities/names/n89669082 Synthetic geometry of manifolds / Anders Kock. Cambridge ; New York : Cambridge University Press, ©2010. 1 online resource (xiii, 302 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 180 "This elegant book is sure to become the standard introduction to synthetic differential geometry. It deals with some classical spaces in differential geometry, namely 'prolongation spaces' or neighborhoods of the diagonal. These spaces enable a natural description of some of the basic constructions in local differential geometry and, in fact, form an inviting gateway to differential geometry, and also to some differential-geometric notions that exist in algebraic geometry. The presentation conveys the real strength of this approach to differential geometry. Concepts are clarified, proofs are streamlined, and the focus on infinitesimal spaces motivates the discussion well. Some of the specific differential-geometric theories dealt with are connection theory (notably affine connections), geometric distributions, differential forms, jet bundles, differentiable groupoids, differential operators, Riemannian metrics, and harmonic maps. Ideal for graduate students and researchers wishing to familiarize themselves with the field"--Provided by publisher. "This book deals with a certain aspect of the theory of smoothmanifolds, namely (for each k) the kth neigbourhood of the diagonal. A part of the theory presented here also applies in algebraic geometry (smooth schemes). The neighbourhoods of the diagonal are classical mathematical objects. In the context of algebraic geometry, they were introduced by the Grothendieck school in the early 1960s; the Grothendieck ideas were imported into the context of smooth manifolds by Malgrange, Kumpera and Spencer, and others. Kumpera and Spencer call them "prolongation spaces of order k". The study of these spaces has previously been forced to be rather technical, because the prolongation spaces are not themselves manifolds, but live in a wider category of "spaces", which has to be described. For the case of algebraic geometry, one passes from the category of varieties to the wider category of schemes; for the smooth case, Malgrange, Kumpera and Spencer, and others described a category of "generalized differentiablemanifolds with nilpotent elements" (Kumpera and Spencer, 1973, p. 54)"--Provided by publisher. Includes bibliographical references (pages 293-297) and index. Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions. Print version record. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast Differentialgeometrie gnd http://d-nb.info/gnd/4012248-7 Mannigfaltigkeit gnd Differenzierbare Mannigfaltigkeit gnd http://d-nb.info/gnd/4012269-4 Synthetische Differentialgeometrie gnd http://d-nb.info/gnd/4462361-6 Electronic books. has work: Synthetic geometry of manifolds (Text) https://id.oclc.org/worldcat/entity/E39PCFYP7pFtd8tBvKRqtxYtXb https://id.oclc.org/worldcat/ontology/hasWork Print version: Kock, Anders. Synthetic geometry of manifolds. New York : Cambridge University Press, ©2010 9780521116732 (DLC) 2009038164 (OCoLC)401146707 Cambridge tracts in mathematics ; 180. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=318404 Volltext |
spellingShingle | Kock, Anders Synthetic geometry of manifolds / Cambridge tracts in mathematics ; Calculus and linear algebra -- Geometry of the neighbour relation -- Combinatorial differential forms -- The tangent bundle -- Groupoids -- Lie theory; non-abelian covariant derivative -- Jets and differential operators -- Metric notions. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast Differentialgeometrie gnd http://d-nb.info/gnd/4012248-7 Mannigfaltigkeit gnd Differenzierbare Mannigfaltigkeit gnd http://d-nb.info/gnd/4012269-4 Synthetische Differentialgeometrie gnd http://d-nb.info/gnd/4462361-6 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85080549 http://d-nb.info/gnd/4012248-7 http://d-nb.info/gnd/4012269-4 http://d-nb.info/gnd/4462361-6 |
title | Synthetic geometry of manifolds / |
title_auth | Synthetic geometry of manifolds / |
title_exact_search | Synthetic geometry of manifolds / |
title_full | Synthetic geometry of manifolds / Anders Kock. |
title_fullStr | Synthetic geometry of manifolds / Anders Kock. |
title_full_unstemmed | Synthetic geometry of manifolds / Anders Kock. |
title_short | Synthetic geometry of manifolds / |
title_sort | synthetic geometry of manifolds |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. bisacsh Geometry, Differential fast Manifolds (Mathematics) fast Differentialgeometrie gnd http://d-nb.info/gnd/4012248-7 Mannigfaltigkeit gnd Differenzierbare Mannigfaltigkeit gnd http://d-nb.info/gnd/4012269-4 Synthetische Differentialgeometrie gnd http://d-nb.info/gnd/4462361-6 |
topic_facet | Geometry, Differential. Manifolds (Mathematics) Géométrie différentielle. Variétés (Mathématiques) MATHEMATICS Geometry Differential. Geometry, Differential Differentialgeometrie Mannigfaltigkeit Differenzierbare Mannigfaltigkeit Synthetische Differentialgeometrie Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=318404 |
work_keys_str_mv | AT kockanders syntheticgeometryofmanifolds |