Groups of prime power order.: Volume 2 /
Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
W. de Gruyter,
©2008.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
47. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area. |
Beschreibung: | 1 online resource (xv, 596 pages) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9783110208238 3110208237 1281993484 9781281993489 9786611993481 6611993487 3119162396 9783119162395 |
ISSN: | 0938-6572 ; |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn632751434 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 081001s2008 gw ob 001 0 eng d | ||
040 | |a LYU |b eng |e pn |c LYU |d E7B |d OCLCQ |d MEAUC |d N$T |d YDXCP |d IDEBK |d OCLCQ |d FVL |d OCLCQ |d OCLCO |d OCLCF |d DKDLA |d OCLCQ |d AZK |d COCUF |d UIU |d MOR |d PIFAG |d OCLCQ |d U3W |d D6H |d STF |d WRM |d VTS |d NRAMU |d INT |d OCLCQ |d TKN |d OCLCQ |d HS0 |d K6U |d VLY |d QGK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 402467201 |a 503441399 |a 646796541 |a 722705427 |a 728053293 |a 961538410 |a 962633012 |a 994504677 |a 1162091061 |a 1241754453 |a 1290050425 |a 1300614672 | ||
020 | |a 9783110208238 |q (electronic bk.) | ||
020 | |a 3110208237 |q (electronic bk.) | ||
020 | |z 3110204193 | ||
020 | |z 9783110204193 | ||
020 | |a 1281993484 | ||
020 | |a 9781281993489 | ||
020 | |a 9786611993481 | ||
020 | |a 6611993487 | ||
020 | |a 3119162396 | ||
020 | |a 9783119162395 | ||
024 | 7 | |a 10.1515/9783110208238 |2 doi | |
035 | |a (OCoLC)632751434 |z (OCoLC)402467201 |z (OCoLC)503441399 |z (OCoLC)646796541 |z (OCoLC)722705427 |z (OCoLC)728053293 |z (OCoLC)961538410 |z (OCoLC)962633012 |z (OCoLC)994504677 |z (OCoLC)1162091061 |z (OCoLC)1241754453 |z (OCoLC)1290050425 |z (OCoLC)1300614672 | ||
050 | 4 | |a QA177 |b .B472 2008eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512.2 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Berkovich, Yakov. | |
245 | 1 | 0 | |a Groups of prime power order. |n Volume 2 / |c by Yakov Berkovich and Zvonimir Janko. |
260 | |a Berlin ; |a New York : |b W. de Gruyter, |c ©2008. | ||
300 | |a 1 online resource (xv, 596 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics, |x 0938-6572 ; |v 47 | |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area. | |
505 | 0 | |a Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2 | |
505 | 8 | |a 55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups | |
505 | 8 | |a 63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2 | |
505 | 8 | |a 75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16 | |
505 | 8 | |a 86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems | |
546 | |a English. | ||
650 | 0 | |a Finite groups. |0 http://id.loc.gov/authorities/subjects/sh85048354 | |
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 6 | |a Groupes finis. | |
650 | 6 | |a Théorie des groupes. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Finite groups |2 fast | |
650 | 7 | |a Group theory |2 fast | |
700 | 1 | |a Janko, Zvonimir. | |
758 | |i has work: |a Volume 2 Groups of prime power order (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH7p4PXYPgcXhVqBtXDHFq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Berkovich, I︠A︡. G., 1938- |t Groups of prime power order. Volume 2. |d Berlin ; New York : W. de Gruyter, ©2008 |z 9783110204186 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 47. |x 0938-6572 |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274368 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10275912 | ||
938 | |a EBSCOhost |b EBSC |n 274368 | ||
938 | |a YBP Library Services |b YANK |n 2997477 | ||
938 | |a YBP Library Services |b YANK |n 8872492 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn632751434 |
---|---|
_version_ | 1816881721596968960 |
adam_text | |
any_adam_object | |
author | Berkovich, Yakov |
author2 | Janko, Zvonimir |
author2_role | |
author2_variant | z j zj |
author_facet | Berkovich, Yakov Janko, Zvonimir |
author_role | |
author_sort | Berkovich, Yakov |
author_variant | y b yb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA177 |
callnumber-raw | QA177 .B472 2008eb |
callnumber-search | QA177 .B472 2008eb |
callnumber-sort | QA 3177 B472 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2 55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups 63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2 75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16 86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems |
ctrlnum | (OCoLC)632751434 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06088cam a2200721Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn632751434</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">081001s2008 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LYU</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LYU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MEAUC</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">K6U</subfield><subfield code="d">VLY</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">402467201</subfield><subfield code="a">503441399</subfield><subfield code="a">646796541</subfield><subfield code="a">722705427</subfield><subfield code="a">728053293</subfield><subfield code="a">961538410</subfield><subfield code="a">962633012</subfield><subfield code="a">994504677</subfield><subfield code="a">1162091061</subfield><subfield code="a">1241754453</subfield><subfield code="a">1290050425</subfield><subfield code="a">1300614672</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110208238</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110208237</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110204193</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110204193</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281993484</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281993489</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611993481</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611993487</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3119162396</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783119162395</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110208238</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)632751434</subfield><subfield code="z">(OCoLC)402467201</subfield><subfield code="z">(OCoLC)503441399</subfield><subfield code="z">(OCoLC)646796541</subfield><subfield code="z">(OCoLC)722705427</subfield><subfield code="z">(OCoLC)728053293</subfield><subfield code="z">(OCoLC)961538410</subfield><subfield code="z">(OCoLC)962633012</subfield><subfield code="z">(OCoLC)994504677</subfield><subfield code="z">(OCoLC)1162091061</subfield><subfield code="z">(OCoLC)1241754453</subfield><subfield code="z">(OCoLC)1290050425</subfield><subfield code="z">(OCoLC)1300614672</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA177</subfield><subfield code="b">.B472 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berkovich, Yakov.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups of prime power order.</subfield><subfield code="n">Volume 2 /</subfield><subfield code="c">by Yakov Berkovich and Zvonimir Janko.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">W. de Gruyter,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 596 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics,</subfield><subfield code="x">0938-6572 ;</subfield><subfield code="v">47</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048354</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Janko, Zvonimir.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Volume 2 Groups of prime power order (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH7p4PXYPgcXhVqBtXDHFq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Berkovich, I︠A︡. G., 1938-</subfield><subfield code="t">Groups of prime power order. Volume 2.</subfield><subfield code="d">Berlin ; New York : W. de Gruyter, ©2008</subfield><subfield code="z">9783110204186</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">47.</subfield><subfield code="x">0938-6572</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274368</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10275912</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">274368</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2997477</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8872492</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn632751434 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:13Z |
institution | BVB |
isbn | 9783110208238 3110208237 1281993484 9781281993489 9786611993481 6611993487 3119162396 9783119162395 |
issn | 0938-6572 ; |
language | English |
oclc_num | 632751434 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 596 pages) |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | W. de Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics, |
spelling | Berkovich, Yakov. Groups of prime power order. Volume 2 / by Yakov Berkovich and Zvonimir Janko. Berlin ; New York : W. de Gruyter, ©2008. 1 online resource (xv, 596 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics, 0938-6572 ; 47 Includes bibliographical references and indexes. Print version record. Annotation This is the second of three volumes on finite p-group theory, written by two prominent authors in the area. Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2 55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups 63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2 75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16 86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems English. Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Group Theory. bisacsh Finite groups fast Group theory fast Janko, Zvonimir. has work: Volume 2 Groups of prime power order (Text) https://id.oclc.org/worldcat/entity/E39PCH7p4PXYPgcXhVqBtXDHFq https://id.oclc.org/worldcat/ontology/hasWork Print version: Berkovich, I︠A︡. G., 1938- Groups of prime power order. Volume 2. Berlin ; New York : W. de Gruyter, ©2008 9783110204186 De Gruyter expositions in mathematics ; 47. 0938-6572 http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274368 Volltext |
spellingShingle | Berkovich, Yakov Groups of prime power order. De Gruyter expositions in mathematics ; Frontmatter; Contents; List of definitions and notations; Preface; 46. Degrees of irreducible characters of Suzuki p-groups; 47. On the number of metacyclic epimorphic images of finite p-groups; 48. On 2-groups with small centralizer of an involution, I; 49. On 2-groups with small centralizer of an involution, II; 50. Janko's theorem on 2-groups without normal elementary abelian subgroups of order 8; 51. 2-groups with self centralizing subgroup isomorphic to E8; 52. 2-groups with 2-subgroup of small order; 53. 2-groups G with c2(G) = 4; 54. 2-groups G with cn(G) = 4, n > 2 55. 2-groups G with small subgroup (x ? G -- o(x) = 2"")56. Theorem of Ward on quaternion-free 2-groups; 57. Nonabelian 2-groups all of whose minimal nonabelian subgroups are isomorphic and have exponent 4; 58. Non-Dedekindian p-groups all of whose nonnormal subgroups of the same order are conjugate; 59. p-groups with few nonnormal subgroups; 60. The structure of the Burnside group of order 212; 61. Groups of exponent 4 generated by three involutions; 62. Groups with large normal closures of nonnormal cyclic subgroups 63. Groups all of whose cyclic subgroups of composite orders are normal64. p-groups generated by elements of given order; 65. A2-groups; 66. A new proof of Blackburn's theorem on minimal nonmetacyclic 2-groups; 67. Determination of U2-groups; 68. Characterization of groups of prime exponent; 69. Elementary proofs of some Blackburn's theorems; 70. Non-2-generator p-groups all of whose maximal subgroups are 2-generator; 71. Determination of A2-groups; 72. An-groups, n > 2; 73. Classification of modular p-groups; 74. p-groups with a cyclic subgroup of index p2 75. Elements of order = 4 in p-groups76. p-groups with few A1-subgroups; 77. 2-groups with a self-centralizing abelian subgroup of type (4, 2); 78. Minimal nonmodular p-groups; 79. Nonmodular quaternion-free 2-groups; 80. Minimal non-quaternion-free 2-groups; 81. Maximal abelian subgroups in 2-groups; 82. A classification of 2-groups with exactly three involutions; 83. p-groups G with O2(G) or O2*(G) extraspecial; 84. 2-groups whose nonmetacyclic subgroups are generated by involutions; 85. 2-groups with a nonabelian Frattini subgroup of order 16 86. p-groups G with metacyclic O2*(G)87. 2-groups with exactly one nonmetacyclic maximal subgroup; 88. Hall chains in normal subgroups of p-groups; 89. 2-groups with exactly six cyclic subgroups of order 4; 90. Nonabelian 2-groups all of whose minimal nonabelian subgroups are of order 8; 91. Maximal abelian subgroups of p-groups; 92. On minimal nonabelian subgroups of p-groups; Appendix 16. Some central products; Appendix 17. Alternate proofs of characterization theorems of Miller and Janko on 2-groups, and some related results; Appendix 18. Replacement theorems Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Group Theory. bisacsh Finite groups fast Group theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048354 http://id.loc.gov/authorities/subjects/sh85057512 |
title | Groups of prime power order. |
title_auth | Groups of prime power order. |
title_exact_search | Groups of prime power order. |
title_full | Groups of prime power order. Volume 2 / by Yakov Berkovich and Zvonimir Janko. |
title_fullStr | Groups of prime power order. Volume 2 / by Yakov Berkovich and Zvonimir Janko. |
title_full_unstemmed | Groups of prime power order. Volume 2 / by Yakov Berkovich and Zvonimir Janko. |
title_short | Groups of prime power order. |
title_sort | groups of prime power order |
topic | Finite groups. http://id.loc.gov/authorities/subjects/sh85048354 Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Groupes finis. Théorie des groupes. MATHEMATICS Group Theory. bisacsh Finite groups fast Group theory fast |
topic_facet | Finite groups. Group theory. Groupes finis. Théorie des groupes. MATHEMATICS Group Theory. Finite groups Group theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=274368 |
work_keys_str_mv | AT berkovichyakov groupsofprimepowerordervolume2 AT jankozvonimir groupsofprimepowerordervolume2 |