Stability criteria for fluid flows /:
This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2010.
|
Schriftenreihe: | Series on advances in mathematics for applied sciences ;
v. 81. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them. |
Beschreibung: | 1 online resource (xvi, 399 pages). |
Bibliographie: | Includes bibliographical references (pages 379-399). |
ISBN: | 9789814289573 9814289574 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn630153528 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 100524s2010 si ob 000 0 eng d | ||
010 | |z 2009026822 | ||
040 | |a LLB |b eng |e pn |c LLB |d N$T |d E7B |d YDXCP |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d AZK |d AGLDB |d MOR |d OCLCO |d JBG |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d YOU |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d M8D |d UKAHL |d UKCRE |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 670428971 |a 694144134 |a 764546187 |a 961531445 |a 962574875 |a 988440950 |a 991961242 |a 1037756872 |a 1038624831 |a 1055361961 |a 1058122183 |a 1063975895 |a 1081231402 |a 1153543720 |a 1228591616 | ||
020 | |a 9789814289573 |q (electronic bk.) | ||
020 | |a 9814289574 |q (electronic bk.) | ||
020 | |z 9814289566 | ||
020 | |z 9789814289566 | ||
035 | |a (OCoLC)630153528 |z (OCoLC)670428971 |z (OCoLC)694144134 |z (OCoLC)764546187 |z (OCoLC)961531445 |z (OCoLC)962574875 |z (OCoLC)988440950 |z (OCoLC)991961242 |z (OCoLC)1037756872 |z (OCoLC)1038624831 |z (OCoLC)1055361961 |z (OCoLC)1058122183 |z (OCoLC)1063975895 |z (OCoLC)1081231402 |z (OCoLC)1153543720 |z (OCoLC)1228591616 | ||
050 | 4 | |a QC327 |b .G46 2010eb | |
072 | 7 | |a SCI |x 065000 |2 bisacsh | |
082 | 7 | |a 536/.25 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Georgescu, Adelina. | |
245 | 1 | 0 | |a Stability criteria for fluid flows / |c Adelina Georgescu, Lidia Palese. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2010. | ||
300 | |a 1 online resource (xvi, 399 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on advances in mathematics for applied sciences ; |v v. 81 | |
504 | |a Includes bibliographical references (pages 379-399). | ||
505 | 0 | |a 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost. | |
520 | |a This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Heat |x Convection |x Mathematics. | |
650 | 0 | |a Fluid mechanics |x Mathematics. | |
650 | 6 | |a Chaleur |x Convection |x Mathématiques. | |
650 | 6 | |a Mécanique des fluides |x Mathématiques. | |
650 | 7 | |a SCIENCE |x Mechanics |x Thermodynamics. |2 bisacsh | |
650 | 7 | |a Fluid mechanics |x Mathematics |2 fast | |
650 | 7 | |a Heat |x Convection |x Mathematics |2 fast | |
650 | 7 | |a Konvektion |2 gnd |0 http://d-nb.info/gnd/4117572-4 | |
650 | 7 | |a Mathematisches Modell |2 gnd |0 http://d-nb.info/gnd/4114528-8 | |
650 | 7 | |a Strömungsmechanik |2 gnd |0 http://d-nb.info/gnd/4077970-1 | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Palese, Lidia. | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
776 | 1 | |z 9814289566 | |
776 | 1 | |z 9789814289566 | |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 81. |0 http://id.loc.gov/authorities/names/n90710999 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340665 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24686473 | ||
938 | |a ebrary |b EBRY |n ebr10422199 | ||
938 | |a EBSCOhost |b EBSC |n 340665 | ||
938 | |a YBP Library Services |b YANK |n 3511511 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn630153528 |
---|---|
_version_ | 1816881721097846784 |
adam_text | |
any_adam_object | |
author | Georgescu, Adelina |
author2 | Palese, Lidia |
author2_role | |
author2_variant | l p lp |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Georgescu, Adelina Palese, Lidia World Scientific (Firm) |
author_role | |
author_sort | Georgescu, Adelina |
author_variant | a g ag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC327 |
callnumber-raw | QC327 .G46 2010eb |
callnumber-search | QC327 .G46 2010eb |
callnumber-sort | QC 3327 G46 42010EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost. |
ctrlnum | (OCoLC)630153528 |
dewey-full | 536/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.25 |
dewey-search | 536/.25 |
dewey-sort | 3536 225 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06014cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn630153528</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">100524s2010 si ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2009026822</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LLB</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LLB</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">YOU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">670428971</subfield><subfield code="a">694144134</subfield><subfield code="a">764546187</subfield><subfield code="a">961531445</subfield><subfield code="a">962574875</subfield><subfield code="a">988440950</subfield><subfield code="a">991961242</subfield><subfield code="a">1037756872</subfield><subfield code="a">1038624831</subfield><subfield code="a">1055361961</subfield><subfield code="a">1058122183</subfield><subfield code="a">1063975895</subfield><subfield code="a">1081231402</subfield><subfield code="a">1153543720</subfield><subfield code="a">1228591616</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814289573</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814289574</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814289566</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814289566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)630153528</subfield><subfield code="z">(OCoLC)670428971</subfield><subfield code="z">(OCoLC)694144134</subfield><subfield code="z">(OCoLC)764546187</subfield><subfield code="z">(OCoLC)961531445</subfield><subfield code="z">(OCoLC)962574875</subfield><subfield code="z">(OCoLC)988440950</subfield><subfield code="z">(OCoLC)991961242</subfield><subfield code="z">(OCoLC)1037756872</subfield><subfield code="z">(OCoLC)1038624831</subfield><subfield code="z">(OCoLC)1055361961</subfield><subfield code="z">(OCoLC)1058122183</subfield><subfield code="z">(OCoLC)1063975895</subfield><subfield code="z">(OCoLC)1081231402</subfield><subfield code="z">(OCoLC)1153543720</subfield><subfield code="z">(OCoLC)1228591616</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC327</subfield><subfield code="b">.G46 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">065000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">536/.25</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Georgescu, Adelina.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability criteria for fluid flows /</subfield><subfield code="c">Adelina Georgescu, Lidia Palese.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 399 pages).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 81</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 379-399).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Heat</subfield><subfield code="x">Convection</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fluid mechanics</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chaleur</subfield><subfield code="x">Convection</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique des fluides</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Thermodynamics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fluid mechanics</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat</subfield><subfield code="x">Convection</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Konvektion</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4117572-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4114528-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4077970-1</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palese, Lidia.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9814289566</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9789814289566</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 81.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90710999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340665</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24686473</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422199</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340665</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511511</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn630153528 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:17:13Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789814289573 9814289574 |
language | English |
oclc_num | 630153528 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 399 pages). |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co., |
record_format | marc |
series | Series on advances in mathematics for applied sciences ; |
series2 | Series on advances in mathematics for applied sciences ; |
spelling | Georgescu, Adelina. Stability criteria for fluid flows / Adelina Georgescu, Lidia Palese. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2010. 1 online resource (xvi, 399 pages). text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on advances in mathematics for applied sciences ; v. 81 Includes bibliographical references (pages 379-399). 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost. This is a comprehensive and self-contained introduction to the mathematical problems of thermal convection. The book delineates the main ideas leading to the authors' variant of the energy method. These can be also applied to other variants of the energy method. The importance of the book lies in its focussing on the best concrete results known in the domain of fluid flows stability and in the systematic treatment of mathematical instruments used in order to reach them. Print version record. Heat Convection Mathematics. Fluid mechanics Mathematics. Chaleur Convection Mathématiques. Mécanique des fluides Mathématiques. SCIENCE Mechanics Thermodynamics. bisacsh Fluid mechanics Mathematics fast Heat Convection Mathematics fast Konvektion gnd http://d-nb.info/gnd/4117572-4 Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Strömungsmechanik gnd http://d-nb.info/gnd/4077970-1 Electronic book. Palese, Lidia. World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 9814289566 9789814289566 Series on advances in mathematics for applied sciences ; v. 81. http://id.loc.gov/authorities/names/n90710999 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340665 Volltext |
spellingShingle | Georgescu, Adelina Stability criteria for fluid flows / Series on advances in mathematics for applied sciences ; 1. Mathematical models governing fluid flows stability. 1.1. General mathematical models of thermodynamics. 1.2. Classical mathematical models in thermodynamics of fluids. 1.3. Classical mathematical models in thermodynamics. 1.4. Classical perturbation models. 1.5. Generalized incompressible Navier-Stokes model -- 2. Incompressible Navier-Stokes fluid. 2.1. Back to integral setting; involvement of dynamics and bifurcation. 2.2. Stability in semidynamical systems. 2.3. Perturbations; asymptotic stability; linear stability. 2.4. Linear stability. 2.5. Prodi's linearization principle. 2.6. Estimates for the spectrum of Ã. 2.7. Universal stability criteria -- 3. Elements of calculus of variations. 3.1. Generalities. 3.2. Direct and inverse problems of calculus of variations. 3.3. Symmetrization of some matricial ordinary differential operators. 3.4. Variational principles for problems (3.3.1)-(3.3.7). 3.5. Fourier series solutions for variational problems -- 4. Variants of the energy method for non-stationary equations. 4.1. Variant based on differentiation of parameters. 4.2. Variant based on simplest symmetric part of operators. 4.3. Variants based on energy splitting -- 5. Applications to linear Bénard convections. 5.1. Magnetic Bénard convection in a partially ionized fluid. 5.2. Magnetic Bénard convection for a fully ionized fluid. 5.3. Convection in a micro-polar fluid bounded by rigid walls. 5.4. Convections governed by ode's with variable coefficients -- 6. Variational methods applied to linear stability. 6.1. Magnetic Bénard problem with Hall effect. 6.2. Lyapunov method applied to the anisotropic Bénard problem. 6.3. Stability criteria for a quasi-geostrophic forced zonal flow. 6.4. Variational principle for problem (5.3.1), (5.3.2). 6.5. Taylor-Dean problem -- 7. Applications of the direct method to linear stability. 7.1. Couette flow between two cylinders subject to a magnetic field. 7.2. Soret-Dufour driven convection. 7.3. Magnetic Soret-Dufour driven convection. 7.4. Convection in a porous medium. 7.5. Convection in the presence of a dielectrophoretic force. 7.6. Convection in an anisotropic M.H.D. thermodiffusive mixture. 7.7. Inhibition of the thermal convection by a magnetic field. 7.8. Microconvection in a binary layer subject to a strong Soret effect. 7.9. Convection in the layer between the sea bed and the permafrost. Heat Convection Mathematics. Fluid mechanics Mathematics. Chaleur Convection Mathématiques. Mécanique des fluides Mathématiques. SCIENCE Mechanics Thermodynamics. bisacsh Fluid mechanics Mathematics fast Heat Convection Mathematics fast Konvektion gnd http://d-nb.info/gnd/4117572-4 Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Strömungsmechanik gnd http://d-nb.info/gnd/4077970-1 |
subject_GND | http://d-nb.info/gnd/4117572-4 http://d-nb.info/gnd/4114528-8 http://d-nb.info/gnd/4077970-1 |
title | Stability criteria for fluid flows / |
title_auth | Stability criteria for fluid flows / |
title_exact_search | Stability criteria for fluid flows / |
title_full | Stability criteria for fluid flows / Adelina Georgescu, Lidia Palese. |
title_fullStr | Stability criteria for fluid flows / Adelina Georgescu, Lidia Palese. |
title_full_unstemmed | Stability criteria for fluid flows / Adelina Georgescu, Lidia Palese. |
title_short | Stability criteria for fluid flows / |
title_sort | stability criteria for fluid flows |
topic | Heat Convection Mathematics. Fluid mechanics Mathematics. Chaleur Convection Mathématiques. Mécanique des fluides Mathématiques. SCIENCE Mechanics Thermodynamics. bisacsh Fluid mechanics Mathematics fast Heat Convection Mathematics fast Konvektion gnd http://d-nb.info/gnd/4117572-4 Mathematisches Modell gnd http://d-nb.info/gnd/4114528-8 Strömungsmechanik gnd http://d-nb.info/gnd/4077970-1 |
topic_facet | Heat Convection Mathematics. Fluid mechanics Mathematics. Chaleur Convection Mathématiques. Mécanique des fluides Mathématiques. SCIENCE Mechanics Thermodynamics. Fluid mechanics Mathematics Heat Convection Mathematics Konvektion Mathematisches Modell Strömungsmechanik Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340665 |
work_keys_str_mv | AT georgescuadelina stabilitycriteriaforfluidflows AT paleselidia stabilitycriteriaforfluidflows AT worldscientificfirm stabilitycriteriaforfluidflows |