Moments, positive polynomials and their applications /:
Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Singapore :
Imperial College Press ; Distributed by World Scientific Pub. Co.,
©2010.
|
Schriftenreihe: | Imperial College Press optimization series ;
v. 1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones, standard duality in convex optimization nicely expresses the duality between moments and positive polynomials. In the second part, the methodology is particularized and described in detail for various applications, including global optimization, probability, optimal control, mathematical finance, multivariate integration, etc., and examples are provided for each particular application. |
Beschreibung: | 1 online resource (xxi, 361 pages :) |
Bibliographie: | Includes bibliographical references (pages 341-358) and index. |
ISBN: | 9781848164468 1848164467 9786612760006 6612760001 |
ISSN: | 2041-1677 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn624365972 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cuu|||uu||| | ||
008 | 100520s2010 enka ob 001 0 eng d | ||
040 | |a LLB |b eng |e pn |c LLB |d N$T |d OCLCQ |d CDX |d OCLCQ |d YDXCP |d OCLCF |d OCLCO |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d VT2 |d OCLCQ |d WYU |d OCLCO |d STF |d OCLCO |d JBG |d LEAUB |d M8D |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
016 | 7 | |a 015369161 |2 Uk | |
019 | |a 666256886 |a 670430586 |a 1055403219 |a 1063812033 |a 1086435527 | ||
020 | |a 9781848164468 |q (electronic bk.) | ||
020 | |a 1848164467 |q (electronic bk.) | ||
020 | |a 9786612760006 | ||
020 | |a 6612760001 | ||
020 | |z 1848164459 | ||
020 | |z 9781848164451 | ||
024 | 8 | |a 9786612760006 | |
035 | |a (OCoLC)624365972 |z (OCoLC)666256886 |z (OCoLC)670430586 |z (OCoLC)1055403219 |z (OCoLC)1063812033 |z (OCoLC)1086435527 | ||
037 | |a 276000 |b MIL | ||
050 | 4 | |a QA402.5 |b .L37 2010eb | |
072 | 7 | |a MAT |x 042000 |2 bisacsh | |
082 | 7 | |a 519.6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lasserre, Jean-Bernard, |d 1953- |1 https://id.oclc.org/worldcat/entity/E39PBJppFWCvbGMvqqgvgBvJXd |0 http://id.loc.gov/authorities/names/n94021200 | |
245 | 1 | 0 | |a Moments, positive polynomials and their applications / |c Jean Bernard Lasserre. |
260 | |a London : |b Imperial College Press ; |a Singapore : |b Distributed by World Scientific Pub. Co., |c ©2010. | ||
300 | |a 1 online resource (xxi, 361 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Imperial College Press optimization series, |x 2041-1677 ; |v v. 1 | |
504 | |a Includes bibliographical references (pages 341-358) and index. | ||
505 | 0 | |a 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources. | |
520 | |a Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones, standard duality in convex optimization nicely expresses the duality between moments and positive polynomials. In the second part, the methodology is particularized and described in detail for various applications, including global optimization, probability, optimal control, mathematical finance, multivariate integration, etc., and examples are provided for each particular application. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Mathematical optimization. |0 http://id.loc.gov/authorities/subjects/sh85082127 | |
650 | 0 | |a Moment problems (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh87004776 | |
650 | 0 | |a Geometry, Algebraic. |0 http://id.loc.gov/authorities/subjects/sh85054140 | |
650 | 0 | |a Polynomials. |0 http://id.loc.gov/authorities/subjects/sh85104702 | |
650 | 6 | |a Optimisation mathématique. | |
650 | 6 | |a Problèmes des moments (Mathématiques) | |
650 | 6 | |a Géométrie algébrique. | |
650 | 6 | |a Polynômes. | |
650 | 7 | |a MATHEMATICS |x Optimization. |2 bisacsh | |
650 | 7 | |a Geometry, Algebraic |2 fast | |
650 | 7 | |a Mathematical optimization |2 fast | |
650 | 7 | |a Moment problems (Mathematics) |2 fast | |
650 | 7 | |a Polynomials |2 fast | |
650 | 7 | |a Positives Polynom |2 gnd |0 http://d-nb.info/gnd/4193849-5 | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a Moments, positive polynomials and their applications (Work) |1 https://id.oclc.org/worldcat/entity/E39PCFDfkMwHTJgG7rtjWWQH4q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 1848164459 | |
776 | 1 | |z 9781848164451 | |
830 | 0 | |a Imperial College Press optimization series ; |v v. 1. |0 http://id.loc.gov/authorities/names/no2010003302 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588 |3 Volltext | |
938 | |a Coutts Information Services |b COUT |n 15220667 | ||
938 | |a EBSCOhost |b EBSC |n 340588 | ||
938 | |a YBP Library Services |b YANK |n 3511269 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn624365972 |
---|---|
_version_ | 1813903365380243457 |
adam_text | |
any_adam_object | |
author | Lasserre, Jean-Bernard, 1953- |
author_GND | http://id.loc.gov/authorities/names/n94021200 |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Lasserre, Jean-Bernard, 1953- World Scientific (Firm) |
author_role | |
author_sort | Lasserre, Jean-Bernard, 1953- |
author_variant | j b l jbl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.5 .L37 2010eb |
callnumber-search | QA402.5 .L37 2010eb |
callnumber-sort | QA 3402.5 L37 42010EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources. |
ctrlnum | (OCoLC)624365972 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07737cam a2200721 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn624365972</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cuu|||uu|||</controlfield><controlfield tag="008">100520s2010 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LLB</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LLB</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015369161</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">666256886</subfield><subfield code="a">670430586</subfield><subfield code="a">1055403219</subfield><subfield code="a">1063812033</subfield><subfield code="a">1086435527</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848164468</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848164467</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612760006</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612760001</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1848164459</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848164451</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612760006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)624365972</subfield><subfield code="z">(OCoLC)666256886</subfield><subfield code="z">(OCoLC)670430586</subfield><subfield code="z">(OCoLC)1055403219</subfield><subfield code="z">(OCoLC)1063812033</subfield><subfield code="z">(OCoLC)1086435527</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">276000</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA402.5</subfield><subfield code="b">.L37 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">042000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lasserre, Jean-Bernard,</subfield><subfield code="d">1953-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJppFWCvbGMvqqgvgBvJXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94021200</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moments, positive polynomials and their applications /</subfield><subfield code="c">Jean Bernard Lasserre.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Singapore :</subfield><subfield code="b">Distributed by World Scientific Pub. Co.,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, 361 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Imperial College Press optimization series,</subfield><subfield code="x">2041-1677 ;</subfield><subfield code="v">v. 1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 341-358) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones, standard duality in convex optimization nicely expresses the duality between moments and positive polynomials. In the second part, the methodology is particularized and described in detail for various applications, including global optimization, probability, optimal control, mathematical finance, multivariate integration, etc., and examples are provided for each particular application.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082127</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Moment problems (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87004776</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Algebraic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054140</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104702</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes des moments (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie algébrique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Optimization.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Algebraic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical optimization</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Moment problems (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Positives Polynom</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4193849-5</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Moments, positive polynomials and their applications (Work)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFDfkMwHTJgG7rtjWWQH4q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1848164459</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781848164451</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press optimization series ;</subfield><subfield code="v">v. 1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010003302</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">15220667</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340588</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511269</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn624365972 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:17:31Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9781848164468 1848164467 9786612760006 6612760001 |
issn | 2041-1677 ; |
language | English |
oclc_num | 624365972 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xxi, 361 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Imperial College Press ; Distributed by World Scientific Pub. Co., |
record_format | marc |
series | Imperial College Press optimization series ; |
series2 | Imperial College Press optimization series, |
spelling | Lasserre, Jean-Bernard, 1953- https://id.oclc.org/worldcat/entity/E39PBJppFWCvbGMvqqgvgBvJXd http://id.loc.gov/authorities/names/n94021200 Moments, positive polynomials and their applications / Jean Bernard Lasserre. London : Imperial College Press ; Singapore : Distributed by World Scientific Pub. Co., ©2010. 1 online resource (xxi, 361 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Imperial College Press optimization series, 2041-1677 ; v. 1 Includes bibliographical references (pages 341-358) and index. 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources. Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP). This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones, standard duality in convex optimization nicely expresses the duality between moments and positive polynomials. In the second part, the methodology is particularized and described in detail for various applications, including global optimization, probability, optimal control, mathematical finance, multivariate integration, etc., and examples are provided for each particular application. Print version record. Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Moment problems (Mathematics) http://id.loc.gov/authorities/subjects/sh87004776 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Optimisation mathématique. Problèmes des moments (Mathématiques) Géométrie algébrique. Polynômes. MATHEMATICS Optimization. bisacsh Geometry, Algebraic fast Mathematical optimization fast Moment problems (Mathematics) fast Polynomials fast Positives Polynom gnd http://d-nb.info/gnd/4193849-5 World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: Moments, positive polynomials and their applications (Work) https://id.oclc.org/worldcat/entity/E39PCFDfkMwHTJgG7rtjWWQH4q https://id.oclc.org/worldcat/ontology/hasWork 1848164459 9781848164451 Imperial College Press optimization series ; v. 1. http://id.loc.gov/authorities/names/no2010003302 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588 Volltext |
spellingShingle | Lasserre, Jean-Bernard, 1953- Moments, positive polynomials and their applications / Imperial College Press optimization series ; 1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources. Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Moment problems (Mathematics) http://id.loc.gov/authorities/subjects/sh87004776 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Optimisation mathématique. Problèmes des moments (Mathématiques) Géométrie algébrique. Polynômes. MATHEMATICS Optimization. bisacsh Geometry, Algebraic fast Mathematical optimization fast Moment problems (Mathematics) fast Polynomials fast Positives Polynom gnd http://d-nb.info/gnd/4193849-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082127 http://id.loc.gov/authorities/subjects/sh87004776 http://id.loc.gov/authorities/subjects/sh85054140 http://id.loc.gov/authorities/subjects/sh85104702 http://d-nb.info/gnd/4193849-5 |
title | Moments, positive polynomials and their applications / |
title_auth | Moments, positive polynomials and their applications / |
title_exact_search | Moments, positive polynomials and their applications / |
title_full | Moments, positive polynomials and their applications / Jean Bernard Lasserre. |
title_fullStr | Moments, positive polynomials and their applications / Jean Bernard Lasserre. |
title_full_unstemmed | Moments, positive polynomials and their applications / Jean Bernard Lasserre. |
title_short | Moments, positive polynomials and their applications / |
title_sort | moments positive polynomials and their applications |
topic | Mathematical optimization. http://id.loc.gov/authorities/subjects/sh85082127 Moment problems (Mathematics) http://id.loc.gov/authorities/subjects/sh87004776 Geometry, Algebraic. http://id.loc.gov/authorities/subjects/sh85054140 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Optimisation mathématique. Problèmes des moments (Mathématiques) Géométrie algébrique. Polynômes. MATHEMATICS Optimization. bisacsh Geometry, Algebraic fast Mathematical optimization fast Moment problems (Mathematics) fast Polynomials fast Positives Polynom gnd http://d-nb.info/gnd/4193849-5 |
topic_facet | Mathematical optimization. Moment problems (Mathematics) Geometry, Algebraic. Polynomials. Optimisation mathématique. Problèmes des moments (Mathématiques) Géométrie algébrique. Polynômes. MATHEMATICS Optimization. Geometry, Algebraic Mathematical optimization Polynomials Positives Polynom |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340588 |
work_keys_str_mv | AT lasserrejeanbernard momentspositivepolynomialsandtheirapplications AT worldscientificfirm momentspositivepolynomialsandtheirapplications |