Collective excitations in unconventional superconductors and superfluids /:
This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF & SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique -- authors bui...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2010.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF & SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique -- authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF & SC. The monograph creates the new scientific direction - the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas. |
Beschreibung: | 1 online resource (xxxvii, 820 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 781-810). |
ISBN: | 9789812771247 9812771247 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn624343519 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 100520s2010 si a ob 000 0 eng d | ||
040 | |a LLB |b eng |e pn |c LLB |d N$T |d OCLCQ |d OCLCF |d OCLCO |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d YOU |d STF |d M8D |d UKAHL |d LEAUB |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 670430139 |a 1086490394 | ||
020 | |a 9789812771247 |q (electronic bk.) | ||
020 | |a 9812771247 |q (electronic bk.) | ||
020 | |z 9812771239 | ||
020 | |z 9789812771230 | ||
035 | |a (OCoLC)624343519 |z (OCoLC)670430139 |z (OCoLC)1086490394 | ||
050 | 4 | |a QC175.4 |b .B787 2010eb | |
072 | 7 | |a TEC |x 039000 |2 bisacsh | |
082 | 7 | |a 537.623 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Brusov, P. N. |q (Petr Nikitovich) |1 https://id.oclc.org/worldcat/entity/E39PCjByvM3vDFMPqKdM9PJKJP |0 http://id.loc.gov/authorities/names/n88249443 | |
245 | 1 | 0 | |a Collective excitations in unconventional superconductors and superfluids / |c Peter Brusov, Pavel Brusov. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2010. | ||
300 | |a 1 online resource (xxxvii, 820 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 781-810). | ||
505 | 0 | |a I. Functional integration method. 1.1. Functional integrals in statistical physics. 1.2. Functional integrals and diagram techniques for Bose-particles. 1.3. Functional integrals and diagram techniques for Fermi-particles. 1.4. Method of successive integration over fast and slow fields -- II. Collective excitations in superfluid Fermi-systems with s-pairing. 2.1. Effective action functional of the superfluid Fermi-gas. 2.2. Bose-spectrum of superfluid Fermi-gas. 2.3. Fermi-gas with Coulomb interaction -- III. Sound propagation in superfluid [symbol]He and superconductors. 3.1. Sound propagation in superfluid [symbol]He. 3.2. Sound propagation in conventional superconductors -- IV. Superfluid phases in [symbol]He. 4.1. Introduction : Fermi-systems with nontrivial pairing. 4.2. Properties of superfluid phases in [symbol]He -- V. The model of [symbol]He. 5.1. The path integral approach. 5.2. Kinetic equation method -- VI. Collective excitations in the B-phase of [symbol]He. 6.1. The quadratic form of action functional. 6.2. The collective mode frequencies. 6.3. Dispersion corrections to the collective mode spectrum. 6.4. The pair-breaking mode dispersion law. 6.5. Collective mode spectrum calculated by the kinetic equation method. 6.6. Fermi-liquid corrections. 6.7. Textural effects on the squashing modes. 6.8. Coupling of order-parameter collective modes to ultrasound -- VII. Collective excitations in the A-phase of [symbol]He. 7.1. A-phase of [symbol]He. 7.2. The collective mode spectrum in the absence of magnetic fields. 7.3. The latent symmetry, additional Goldstone modes, W-bosons. 7.4. The linear Zeeman effect for clapping- and pair-breaking modes. 7.5. Kinetic equation results on collective modes in A-phase. 7.6. Textural effects in A-phase -- VIII. Identification of [symbol]He by ultrasound experiments. 8.1. Introduction. 8.2. Mermin-Star's phase diagram analysis. 8.3. Axial phase. 8.4. Conclusion -- IX. Stability of Goldstone modes. 9.1. Stability of Goldstone-modes and their dispersion laws. 9.2. Stability of Goldstone-modes in the B-phase. 9.3. Stability of Goldstone-modes in the axial A-phase. 9.4. Stability of Goldstone-modes in the planar 2D-phase -- X. Influence of dipole interaction and magnetic field on collective excitations. 10.1. The influence of the dipole interaction on collective excitations. 10.2. The influence of the magnetic field on collective excitations. 10.3. Conclusion -- XI. The influence of the electric field on the collective excitations in [symbol]He and [symbol]He. 11.1. The energy spectrum and hydrodynamics of [symbol]He in a strong electric field (macroscopic approach). 11.2. Superfluid Bose-systems in the electric field (microscopic approach). 11.3. The effective action functional for the superfluid [symbol]He in the electric field. 11.4. The influence of the electric field on the Bose-spectrum in the B-phase. 11.5. The influence of the electric field on the Bose-spectrum in the A-phase -- XII. The order parameter distortion and collective modes in [symbol]He-B. 12.1. The external perturbations and the order parameter distortions. 12.2. The collective mode spectrum under the order parameter distortion. 12.3. Sound experiments at the absorption edge. 12.4. Subdominant f-wave pairing interactions in superfluid [symbol]He -- XIII. Splitting of the squashing mode and the method of superfluid velocity measurement in [symbol]He-B. 13.1. A doublet splitting of the squashing mode in superfluid [symbol]He-B. 13.2. The method of superfluid velocity measurement in [symbol]He-B -- XIV. Superfluid pPhase of[symbol]He-B near the boundary. 14.1. Introduction. 14.2. Transverse sound experiments. 14.3. Possible new phases near the boundary. 14.4. Different branches of squashing mode. 14.5. Deformed B-phase. 14.6. Conclusion -- XV. Collective excitations in the planar 2D-phase of superfluid [symbol]He. 15.1. The planar 2D-phase of superfluid [symbol]He. 15.2. Collective modes in [symbol]He-2D at zero momenta of excitations -- XVI. Dispersion induced splitting of the collective mode spectrum in axial- and planar-phases of superfluid [symbol]He. 16.1. Introduction. 16.2. Axial phase. 16.3. Planar phase. 16.4. Conclusion -- XVII. Collective excitations in the polar-phase. 17.1. Calculation of the collective mode spectrum. 17.2. Conclusion -- XVIII. Collective mode spectrum in A[symbol]-phase of superfluid [symbol]He. 18.1. Calculation of the collective mode spectrum. 18.2. Conclusion -- XIX. Superfluidity of two-dimensional and one-dimensional systems. 19.1. Phase transitions in two-dimensional systems. 19.2. Two-dimensional superfluidity. 19.3. Quantum vortices. 19.4. One-dimensional systems. 19.5. Superfluidity in Fermi films. Singlet pairing. 19.6. Triplet pairing. Thick films. 19.7. Model of [symbol]He-film. 19.8. Superfluid phases of a two-dimensional superfluid [symbol]He. 19.9. Bose-spectrum of the a-phase. 19.10. Bose-spectrum of the b-phase. 19.11. The two-dimensional superfluidity must exist! 19.12. New possibility for the search of 2D-superfluidity in [symbol]He-films -- XX. Bose-spectrum of superfluid solutions [symbol]He-[symbol]He. 20.1. Superfluidity of [symbol]He, dissolved in [symbol]He. 20.2. The case of s-pairing in [symbol]He. Effective action functional of the [symbol]He-[symbol]He solutions. 20.3. Bose-spectrum of the [symbol]He-[symbol]He solution. 20.4. The case of p-pairing. The effective action functional of the [symbol]He-[symbol]He solution. 20.5. Bose-spectrum of a solution of the type [symbol]He-B-[symbol]He. 20.6. Bose-spectrum of a system of the type [symbol]He-A-[symbol]He. 20.7. Bose-spectrum of films of the types [symbol]He-a-[symbol]He and [symbol]He-b-[symbol]He. 20.8. Conclusion -- XXI. Novel sound phenomena in impure superfluids. 21.1. Introduction. 21.2. Decoupling of first and second sound in pure superfluids. 21.3. Sounds coupling in impure superfluids. 21.4. Slow pressure (density) oscillations, fast temperature (entropy) oscillations. 21.5. Fast mode frequency shift at T[symbol](T[symbol]). 21.6. Difference in nature of first and second sound In impure superfluids. 21.7. Sound conversion phenomena. 21.8. Sound conversion experimens in pure superfluids. 21.9. Some possible new sound experiments in impure superfluids. 21.10. Coupling of two slow modes in superfluid [symbol]He-[symbol]He mixture in aerogel. 21.11. Nonlinear hydrodynamic equations for superfluid helium in aerogel. 21.12. Putterman's type equations. 21.13. Conclusion -- XXII. Path integral approach to the theory of crystals -- XXIII. Effective interaction of electrons near the Fermi-surface -- XXIV. The path integral models of p- and d-pairing for bulk superconductors. 24.1. Models of p- and d-pairing. 24.2. p-paring. 24.3. d-pairing -- XXV. High Temperature Superconductors (HTSC) and their physical properties. 25.1. The discovery of HTSC. 25.2. Physical properties of HTSC -- XXVI. Symmetry of order parameter in HTSC. 26.1. Introduction. 26.2. Symmetry classification of HTSC states. 26.3. Singlet states. 26.4. Pairing symmetry and pairing interactions. 26.5. Experimental symmetry probes. 26.6. Experimental evidence for [symbol] pairing. 26.7. Irradiation studies. 26.8. List of abridgements for chapters XXV and XXVI -- XXVII. D-pairing in HTSC. 27.1. Introduction. 27.2. Bulk HTSC under d-pairing -- XXVIII. How to distinguish the mixture of two d-wave states from pure d-wave state of HTSC. 28.1. The mixture of two d-wave states. 28.2. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors. 28.3. Conclusion -- XXIX. p-wave superconductors. 29.1. Introduction. 29.2. Bulk p-wave superconductivity -- XXX. Two dimensional p- and d-wave superconductivity. 30.1. Two-dimensional models of p- and d-pairing in USC. 30.2. p-pairing. 30.3. Two-dimensional d-wave superconductivity -- XXXI. Collective modes in the heavy-Fermion superconductors. 31.1. Physical properties of heavy-fermion superconductors. 31.2. Bulk heavy-fermion superconductors under d-pairing. 31.3. Conclusion -- XXXII. Other application of the theory of collective excitations. 32.1. Relativistic analogs of [symbol]He. | |
520 | |a This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF & SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique -- authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF & SC. The monograph creates the new scientific direction - the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Superconductivity. |0 http://id.loc.gov/authorities/subjects/sh85130584 | |
650 | 0 | |a Superfluidity. |0 http://id.loc.gov/authorities/subjects/sh85130598 | |
650 | 0 | |a Superconductors. |0 http://id.loc.gov/authorities/subjects/sh85130585 | |
650 | 0 | |a Collective excitations. |0 http://id.loc.gov/authorities/subjects/sh85028096 | |
650 | 6 | |a Supraconductivité. | |
650 | 6 | |a Superfluidité. | |
650 | 6 | |a Supraconducteurs. | |
650 | 6 | |a Excitations collectives. | |
650 | 7 | |a superconductor. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Superconductors & Superconductivity. |2 bisacsh | |
650 | 7 | |a Collective excitations |2 fast | |
650 | 7 | |a Superconductivity |2 fast | |
650 | 7 | |a Superconductors |2 fast | |
650 | 7 | |a Superfluidity |2 fast | |
655 | 4 | |a Electronic book. | |
700 | 1 | |a Brusov, Pavel, |d 1979- |1 https://id.oclc.org/worldcat/entity/E39PCjDfGxcPXTcphHkGrtJMT3 |0 http://id.loc.gov/authorities/names/no2010045803 | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
758 | |i has work: |a Collective excitations in unconventional superconductors and superfluids (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGwxV4Br7rJWVbPtbjDbcX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 9812771239 | |
776 | 1 | |z 9789812771230 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340629 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684305 | ||
938 | |a EBSCOhost |b EBSC |n 340629 | ||
938 | |a YBP Library Services |b YANK |n 3511304 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn624343519 |
---|---|
_version_ | 1816881720784322560 |
adam_text | |
any_adam_object | |
author | Brusov, P. N. (Petr Nikitovich) |
author2 | Brusov, Pavel, 1979- |
author2_role | |
author2_variant | p b pb |
author_GND | http://id.loc.gov/authorities/names/n88249443 http://id.loc.gov/authorities/names/no2010045803 |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Brusov, P. N. (Petr Nikitovich) Brusov, Pavel, 1979- World Scientific (Firm) |
author_role | |
author_sort | Brusov, P. N. |
author_variant | p n b pn pnb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC175 |
callnumber-raw | QC175.4 .B787 2010eb |
callnumber-search | QC175.4 .B787 2010eb |
callnumber-sort | QC 3175.4 B787 42010EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | I. Functional integration method. 1.1. Functional integrals in statistical physics. 1.2. Functional integrals and diagram techniques for Bose-particles. 1.3. Functional integrals and diagram techniques for Fermi-particles. 1.4. Method of successive integration over fast and slow fields -- II. Collective excitations in superfluid Fermi-systems with s-pairing. 2.1. Effective action functional of the superfluid Fermi-gas. 2.2. Bose-spectrum of superfluid Fermi-gas. 2.3. Fermi-gas with Coulomb interaction -- III. Sound propagation in superfluid [symbol]He and superconductors. 3.1. Sound propagation in superfluid [symbol]He. 3.2. Sound propagation in conventional superconductors -- IV. Superfluid phases in [symbol]He. 4.1. Introduction : Fermi-systems with nontrivial pairing. 4.2. Properties of superfluid phases in [symbol]He -- V. The model of [symbol]He. 5.1. The path integral approach. 5.2. Kinetic equation method -- VI. Collective excitations in the B-phase of [symbol]He. 6.1. The quadratic form of action functional. 6.2. The collective mode frequencies. 6.3. Dispersion corrections to the collective mode spectrum. 6.4. The pair-breaking mode dispersion law. 6.5. Collective mode spectrum calculated by the kinetic equation method. 6.6. Fermi-liquid corrections. 6.7. Textural effects on the squashing modes. 6.8. Coupling of order-parameter collective modes to ultrasound -- VII. Collective excitations in the A-phase of [symbol]He. 7.1. A-phase of [symbol]He. 7.2. The collective mode spectrum in the absence of magnetic fields. 7.3. The latent symmetry, additional Goldstone modes, W-bosons. 7.4. The linear Zeeman effect for clapping- and pair-breaking modes. 7.5. Kinetic equation results on collective modes in A-phase. 7.6. Textural effects in A-phase -- VIII. Identification of [symbol]He by ultrasound experiments. 8.1. Introduction. 8.2. Mermin-Star's phase diagram analysis. 8.3. Axial phase. 8.4. Conclusion -- IX. Stability of Goldstone modes. 9.1. Stability of Goldstone-modes and their dispersion laws. 9.2. Stability of Goldstone-modes in the B-phase. 9.3. Stability of Goldstone-modes in the axial A-phase. 9.4. Stability of Goldstone-modes in the planar 2D-phase -- X. Influence of dipole interaction and magnetic field on collective excitations. 10.1. The influence of the dipole interaction on collective excitations. 10.2. The influence of the magnetic field on collective excitations. 10.3. Conclusion -- XI. The influence of the electric field on the collective excitations in [symbol]He and [symbol]He. 11.1. The energy spectrum and hydrodynamics of [symbol]He in a strong electric field (macroscopic approach). 11.2. Superfluid Bose-systems in the electric field (microscopic approach). 11.3. The effective action functional for the superfluid [symbol]He in the electric field. 11.4. The influence of the electric field on the Bose-spectrum in the B-phase. 11.5. The influence of the electric field on the Bose-spectrum in the A-phase -- XII. The order parameter distortion and collective modes in [symbol]He-B. 12.1. The external perturbations and the order parameter distortions. 12.2. The collective mode spectrum under the order parameter distortion. 12.3. Sound experiments at the absorption edge. 12.4. Subdominant f-wave pairing interactions in superfluid [symbol]He -- XIII. Splitting of the squashing mode and the method of superfluid velocity measurement in [symbol]He-B. 13.1. A doublet splitting of the squashing mode in superfluid [symbol]He-B. 13.2. The method of superfluid velocity measurement in [symbol]He-B -- XIV. Superfluid pPhase of[symbol]He-B near the boundary. 14.1. Introduction. 14.2. Transverse sound experiments. 14.3. Possible new phases near the boundary. 14.4. Different branches of squashing mode. 14.5. Deformed B-phase. 14.6. Conclusion -- XV. Collective excitations in the planar 2D-phase of superfluid [symbol]He. 15.1. The planar 2D-phase of superfluid [symbol]He. 15.2. Collective modes in [symbol]He-2D at zero momenta of excitations -- XVI. Dispersion induced splitting of the collective mode spectrum in axial- and planar-phases of superfluid [symbol]He. 16.1. Introduction. 16.2. Axial phase. 16.3. Planar phase. 16.4. Conclusion -- XVII. Collective excitations in the polar-phase. 17.1. Calculation of the collective mode spectrum. 17.2. Conclusion -- XVIII. Collective mode spectrum in A[symbol]-phase of superfluid [symbol]He. 18.1. Calculation of the collective mode spectrum. 18.2. Conclusion -- XIX. Superfluidity of two-dimensional and one-dimensional systems. 19.1. Phase transitions in two-dimensional systems. 19.2. Two-dimensional superfluidity. 19.3. Quantum vortices. 19.4. One-dimensional systems. 19.5. Superfluidity in Fermi films. Singlet pairing. 19.6. Triplet pairing. Thick films. 19.7. Model of [symbol]He-film. 19.8. Superfluid phases of a two-dimensional superfluid [symbol]He. 19.9. Bose-spectrum of the a-phase. 19.10. Bose-spectrum of the b-phase. 19.11. The two-dimensional superfluidity must exist! 19.12. New possibility for the search of 2D-superfluidity in [symbol]He-films -- XX. Bose-spectrum of superfluid solutions [symbol]He-[symbol]He. 20.1. Superfluidity of [symbol]He, dissolved in [symbol]He. 20.2. The case of s-pairing in [symbol]He. Effective action functional of the [symbol]He-[symbol]He solutions. 20.3. Bose-spectrum of the [symbol]He-[symbol]He solution. 20.4. The case of p-pairing. The effective action functional of the [symbol]He-[symbol]He solution. 20.5. Bose-spectrum of a solution of the type [symbol]He-B-[symbol]He. 20.6. Bose-spectrum of a system of the type [symbol]He-A-[symbol]He. 20.7. Bose-spectrum of films of the types [symbol]He-a-[symbol]He and [symbol]He-b-[symbol]He. 20.8. Conclusion -- XXI. Novel sound phenomena in impure superfluids. 21.1. Introduction. 21.2. Decoupling of first and second sound in pure superfluids. 21.3. Sounds coupling in impure superfluids. 21.4. Slow pressure (density) oscillations, fast temperature (entropy) oscillations. 21.5. Fast mode frequency shift at T[symbol](T[symbol]). 21.6. Difference in nature of first and second sound In impure superfluids. 21.7. Sound conversion phenomena. 21.8. Sound conversion experimens in pure superfluids. 21.9. Some possible new sound experiments in impure superfluids. 21.10. Coupling of two slow modes in superfluid [symbol]He-[symbol]He mixture in aerogel. 21.11. Nonlinear hydrodynamic equations for superfluid helium in aerogel. 21.12. Putterman's type equations. 21.13. Conclusion -- XXII. Path integral approach to the theory of crystals -- XXIII. Effective interaction of electrons near the Fermi-surface -- XXIV. The path integral models of p- and d-pairing for bulk superconductors. 24.1. Models of p- and d-pairing. 24.2. p-paring. 24.3. d-pairing -- XXV. High Temperature Superconductors (HTSC) and their physical properties. 25.1. The discovery of HTSC. 25.2. Physical properties of HTSC -- XXVI. Symmetry of order parameter in HTSC. 26.1. Introduction. 26.2. Symmetry classification of HTSC states. 26.3. Singlet states. 26.4. Pairing symmetry and pairing interactions. 26.5. Experimental symmetry probes. 26.6. Experimental evidence for [symbol] pairing. 26.7. Irradiation studies. 26.8. List of abridgements for chapters XXV and XXVI -- XXVII. D-pairing in HTSC. 27.1. Introduction. 27.2. Bulk HTSC under d-pairing -- XXVIII. How to distinguish the mixture of two d-wave states from pure d-wave state of HTSC. 28.1. The mixture of two d-wave states. 28.2. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors. 28.3. Conclusion -- XXIX. p-wave superconductors. 29.1. Introduction. 29.2. Bulk p-wave superconductivity -- XXX. Two dimensional p- and d-wave superconductivity. 30.1. Two-dimensional models of p- and d-pairing in USC. 30.2. p-pairing. 30.3. Two-dimensional d-wave superconductivity -- XXXI. Collective modes in the heavy-Fermion superconductors. 31.1. Physical properties of heavy-fermion superconductors. 31.2. Bulk heavy-fermion superconductors under d-pairing. 31.3. Conclusion -- XXXII. Other application of the theory of collective excitations. 32.1. Relativistic analogs of [symbol]He. |
ctrlnum | (OCoLC)624343519 |
dewey-full | 537.623 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.623 |
dewey-search | 537.623 |
dewey-sort | 3537.623 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12650cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn624343519</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">100520s2010 si a ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LLB</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LLB</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">YOU</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">670430139</subfield><subfield code="a">1086490394</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812771247</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812771247</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812771239</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812771230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)624343519</subfield><subfield code="z">(OCoLC)670430139</subfield><subfield code="z">(OCoLC)1086490394</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC175.4</subfield><subfield code="b">.B787 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">537.623</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brusov, P. N.</subfield><subfield code="q">(Petr Nikitovich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjByvM3vDFMPqKdM9PJKJP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88249443</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Collective excitations in unconventional superconductors and superfluids /</subfield><subfield code="c">Peter Brusov, Pavel Brusov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxxvii, 820 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 781-810).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I. Functional integration method. 1.1. Functional integrals in statistical physics. 1.2. Functional integrals and diagram techniques for Bose-particles. 1.3. Functional integrals and diagram techniques for Fermi-particles. 1.4. Method of successive integration over fast and slow fields -- II. Collective excitations in superfluid Fermi-systems with s-pairing. 2.1. Effective action functional of the superfluid Fermi-gas. 2.2. Bose-spectrum of superfluid Fermi-gas. 2.3. Fermi-gas with Coulomb interaction -- III. Sound propagation in superfluid [symbol]He and superconductors. 3.1. Sound propagation in superfluid [symbol]He. 3.2. Sound propagation in conventional superconductors -- IV. Superfluid phases in [symbol]He. 4.1. Introduction : Fermi-systems with nontrivial pairing. 4.2. Properties of superfluid phases in [symbol]He -- V. The model of [symbol]He. 5.1. The path integral approach. 5.2. Kinetic equation method -- VI. Collective excitations in the B-phase of [symbol]He. 6.1. The quadratic form of action functional. 6.2. The collective mode frequencies. 6.3. Dispersion corrections to the collective mode spectrum. 6.4. The pair-breaking mode dispersion law. 6.5. Collective mode spectrum calculated by the kinetic equation method. 6.6. Fermi-liquid corrections. 6.7. Textural effects on the squashing modes. 6.8. Coupling of order-parameter collective modes to ultrasound -- VII. Collective excitations in the A-phase of [symbol]He. 7.1. A-phase of [symbol]He. 7.2. The collective mode spectrum in the absence of magnetic fields. 7.3. The latent symmetry, additional Goldstone modes, W-bosons. 7.4. The linear Zeeman effect for clapping- and pair-breaking modes. 7.5. Kinetic equation results on collective modes in A-phase. 7.6. Textural effects in A-phase -- VIII. Identification of [symbol]He by ultrasound experiments. 8.1. Introduction. 8.2. Mermin-Star's phase diagram analysis. 8.3. Axial phase. 8.4. Conclusion -- IX. Stability of Goldstone modes. 9.1. Stability of Goldstone-modes and their dispersion laws. 9.2. Stability of Goldstone-modes in the B-phase. 9.3. Stability of Goldstone-modes in the axial A-phase. 9.4. Stability of Goldstone-modes in the planar 2D-phase -- X. Influence of dipole interaction and magnetic field on collective excitations. 10.1. The influence of the dipole interaction on collective excitations. 10.2. The influence of the magnetic field on collective excitations. 10.3. Conclusion -- XI. The influence of the electric field on the collective excitations in [symbol]He and [symbol]He. 11.1. The energy spectrum and hydrodynamics of [symbol]He in a strong electric field (macroscopic approach). 11.2. Superfluid Bose-systems in the electric field (microscopic approach). 11.3. The effective action functional for the superfluid [symbol]He in the electric field. 11.4. The influence of the electric field on the Bose-spectrum in the B-phase. 11.5. The influence of the electric field on the Bose-spectrum in the A-phase -- XII. The order parameter distortion and collective modes in [symbol]He-B. 12.1. The external perturbations and the order parameter distortions. 12.2. The collective mode spectrum under the order parameter distortion. 12.3. Sound experiments at the absorption edge. 12.4. Subdominant f-wave pairing interactions in superfluid [symbol]He -- XIII. Splitting of the squashing mode and the method of superfluid velocity measurement in [symbol]He-B. 13.1. A doublet splitting of the squashing mode in superfluid [symbol]He-B. 13.2. The method of superfluid velocity measurement in [symbol]He-B -- XIV. Superfluid pPhase of[symbol]He-B near the boundary. 14.1. Introduction. 14.2. Transverse sound experiments. 14.3. Possible new phases near the boundary. 14.4. Different branches of squashing mode. 14.5. Deformed B-phase. 14.6. Conclusion -- XV. Collective excitations in the planar 2D-phase of superfluid [symbol]He. 15.1. The planar 2D-phase of superfluid [symbol]He. 15.2. Collective modes in [symbol]He-2D at zero momenta of excitations -- XVI. Dispersion induced splitting of the collective mode spectrum in axial- and planar-phases of superfluid [symbol]He. 16.1. Introduction. 16.2. Axial phase. 16.3. Planar phase. 16.4. Conclusion -- XVII. Collective excitations in the polar-phase. 17.1. Calculation of the collective mode spectrum. 17.2. Conclusion -- XVIII. Collective mode spectrum in A[symbol]-phase of superfluid [symbol]He. 18.1. Calculation of the collective mode spectrum. 18.2. Conclusion -- XIX. Superfluidity of two-dimensional and one-dimensional systems. 19.1. Phase transitions in two-dimensional systems. 19.2. Two-dimensional superfluidity. 19.3. Quantum vortices. 19.4. One-dimensional systems. 19.5. Superfluidity in Fermi films. Singlet pairing. 19.6. Triplet pairing. Thick films. 19.7. Model of [symbol]He-film. 19.8. Superfluid phases of a two-dimensional superfluid [symbol]He. 19.9. Bose-spectrum of the a-phase. 19.10. Bose-spectrum of the b-phase. 19.11. The two-dimensional superfluidity must exist! 19.12. New possibility for the search of 2D-superfluidity in [symbol]He-films -- XX. Bose-spectrum of superfluid solutions [symbol]He-[symbol]He. 20.1. Superfluidity of [symbol]He, dissolved in [symbol]He. 20.2. The case of s-pairing in [symbol]He. Effective action functional of the [symbol]He-[symbol]He solutions. 20.3. Bose-spectrum of the [symbol]He-[symbol]He solution. 20.4. The case of p-pairing. The effective action functional of the [symbol]He-[symbol]He solution. 20.5. Bose-spectrum of a solution of the type [symbol]He-B-[symbol]He. 20.6. Bose-spectrum of a system of the type [symbol]He-A-[symbol]He. 20.7. Bose-spectrum of films of the types [symbol]He-a-[symbol]He and [symbol]He-b-[symbol]He. 20.8. Conclusion -- XXI. Novel sound phenomena in impure superfluids. 21.1. Introduction. 21.2. Decoupling of first and second sound in pure superfluids. 21.3. Sounds coupling in impure superfluids. 21.4. Slow pressure (density) oscillations, fast temperature (entropy) oscillations. 21.5. Fast mode frequency shift at T[symbol](T[symbol]). 21.6. Difference in nature of first and second sound In impure superfluids. 21.7. Sound conversion phenomena. 21.8. Sound conversion experimens in pure superfluids. 21.9. Some possible new sound experiments in impure superfluids. 21.10. Coupling of two slow modes in superfluid [symbol]He-[symbol]He mixture in aerogel. 21.11. Nonlinear hydrodynamic equations for superfluid helium in aerogel. 21.12. Putterman's type equations. 21.13. Conclusion -- XXII. Path integral approach to the theory of crystals -- XXIII. Effective interaction of electrons near the Fermi-surface -- XXIV. The path integral models of p- and d-pairing for bulk superconductors. 24.1. Models of p- and d-pairing. 24.2. p-paring. 24.3. d-pairing -- XXV. High Temperature Superconductors (HTSC) and their physical properties. 25.1. The discovery of HTSC. 25.2. Physical properties of HTSC -- XXVI. Symmetry of order parameter in HTSC. 26.1. Introduction. 26.2. Symmetry classification of HTSC states. 26.3. Singlet states. 26.4. Pairing symmetry and pairing interactions. 26.5. Experimental symmetry probes. 26.6. Experimental evidence for [symbol] pairing. 26.7. Irradiation studies. 26.8. List of abridgements for chapters XXV and XXVI -- XXVII. D-pairing in HTSC. 27.1. Introduction. 27.2. Bulk HTSC under d-pairing -- XXVIII. How to distinguish the mixture of two d-wave states from pure d-wave state of HTSC. 28.1. The mixture of two d-wave states. 28.2. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors. 28.3. Conclusion -- XXIX. p-wave superconductors. 29.1. Introduction. 29.2. Bulk p-wave superconductivity -- XXX. Two dimensional p- and d-wave superconductivity. 30.1. Two-dimensional models of p- and d-pairing in USC. 30.2. p-pairing. 30.3. Two-dimensional d-wave superconductivity -- XXXI. Collective modes in the heavy-Fermion superconductors. 31.1. Physical properties of heavy-fermion superconductors. 31.2. Bulk heavy-fermion superconductors under d-pairing. 31.3. Conclusion -- XXXII. Other application of the theory of collective excitations. 32.1. Relativistic analogs of [symbol]He.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF & SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique -- authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF & SC. The monograph creates the new scientific direction - the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Superconductivity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85130584</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Superfluidity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85130598</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Superconductors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85130585</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Collective excitations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028096</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Supraconductivité.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Superfluidité.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Supraconducteurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Excitations collectives.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">superconductor.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Superconductors & Superconductivity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Collective excitations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superconductivity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superfluidity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brusov, Pavel,</subfield><subfield code="d">1979-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjDfGxcPXTcphHkGrtJMT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010045803</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Collective excitations in unconventional superconductors and superfluids (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGwxV4Br7rJWVbPtbjDbcX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9812771239</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9789812771230</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340629</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684305</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340629</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511304</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-ocn624343519 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:12Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789812771247 9812771247 |
language | English |
oclc_num | 624343519 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxxvii, 820 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Brusov, P. N. (Petr Nikitovich) https://id.oclc.org/worldcat/entity/E39PCjByvM3vDFMPqKdM9PJKJP http://id.loc.gov/authorities/names/n88249443 Collective excitations in unconventional superconductors and superfluids / Peter Brusov, Pavel Brusov. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2010. 1 online resource (xxxvii, 820 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 781-810). I. Functional integration method. 1.1. Functional integrals in statistical physics. 1.2. Functional integrals and diagram techniques for Bose-particles. 1.3. Functional integrals and diagram techniques for Fermi-particles. 1.4. Method of successive integration over fast and slow fields -- II. Collective excitations in superfluid Fermi-systems with s-pairing. 2.1. Effective action functional of the superfluid Fermi-gas. 2.2. Bose-spectrum of superfluid Fermi-gas. 2.3. Fermi-gas with Coulomb interaction -- III. Sound propagation in superfluid [symbol]He and superconductors. 3.1. Sound propagation in superfluid [symbol]He. 3.2. Sound propagation in conventional superconductors -- IV. Superfluid phases in [symbol]He. 4.1. Introduction : Fermi-systems with nontrivial pairing. 4.2. Properties of superfluid phases in [symbol]He -- V. The model of [symbol]He. 5.1. The path integral approach. 5.2. Kinetic equation method -- VI. Collective excitations in the B-phase of [symbol]He. 6.1. The quadratic form of action functional. 6.2. The collective mode frequencies. 6.3. Dispersion corrections to the collective mode spectrum. 6.4. The pair-breaking mode dispersion law. 6.5. Collective mode spectrum calculated by the kinetic equation method. 6.6. Fermi-liquid corrections. 6.7. Textural effects on the squashing modes. 6.8. Coupling of order-parameter collective modes to ultrasound -- VII. Collective excitations in the A-phase of [symbol]He. 7.1. A-phase of [symbol]He. 7.2. The collective mode spectrum in the absence of magnetic fields. 7.3. The latent symmetry, additional Goldstone modes, W-bosons. 7.4. The linear Zeeman effect for clapping- and pair-breaking modes. 7.5. Kinetic equation results on collective modes in A-phase. 7.6. Textural effects in A-phase -- VIII. Identification of [symbol]He by ultrasound experiments. 8.1. Introduction. 8.2. Mermin-Star's phase diagram analysis. 8.3. Axial phase. 8.4. Conclusion -- IX. Stability of Goldstone modes. 9.1. Stability of Goldstone-modes and their dispersion laws. 9.2. Stability of Goldstone-modes in the B-phase. 9.3. Stability of Goldstone-modes in the axial A-phase. 9.4. Stability of Goldstone-modes in the planar 2D-phase -- X. Influence of dipole interaction and magnetic field on collective excitations. 10.1. The influence of the dipole interaction on collective excitations. 10.2. The influence of the magnetic field on collective excitations. 10.3. Conclusion -- XI. The influence of the electric field on the collective excitations in [symbol]He and [symbol]He. 11.1. The energy spectrum and hydrodynamics of [symbol]He in a strong electric field (macroscopic approach). 11.2. Superfluid Bose-systems in the electric field (microscopic approach). 11.3. The effective action functional for the superfluid [symbol]He in the electric field. 11.4. The influence of the electric field on the Bose-spectrum in the B-phase. 11.5. The influence of the electric field on the Bose-spectrum in the A-phase -- XII. The order parameter distortion and collective modes in [symbol]He-B. 12.1. The external perturbations and the order parameter distortions. 12.2. The collective mode spectrum under the order parameter distortion. 12.3. Sound experiments at the absorption edge. 12.4. Subdominant f-wave pairing interactions in superfluid [symbol]He -- XIII. Splitting of the squashing mode and the method of superfluid velocity measurement in [symbol]He-B. 13.1. A doublet splitting of the squashing mode in superfluid [symbol]He-B. 13.2. The method of superfluid velocity measurement in [symbol]He-B -- XIV. Superfluid pPhase of[symbol]He-B near the boundary. 14.1. Introduction. 14.2. Transverse sound experiments. 14.3. Possible new phases near the boundary. 14.4. Different branches of squashing mode. 14.5. Deformed B-phase. 14.6. Conclusion -- XV. Collective excitations in the planar 2D-phase of superfluid [symbol]He. 15.1. The planar 2D-phase of superfluid [symbol]He. 15.2. Collective modes in [symbol]He-2D at zero momenta of excitations -- XVI. Dispersion induced splitting of the collective mode spectrum in axial- and planar-phases of superfluid [symbol]He. 16.1. Introduction. 16.2. Axial phase. 16.3. Planar phase. 16.4. Conclusion -- XVII. Collective excitations in the polar-phase. 17.1. Calculation of the collective mode spectrum. 17.2. Conclusion -- XVIII. Collective mode spectrum in A[symbol]-phase of superfluid [symbol]He. 18.1. Calculation of the collective mode spectrum. 18.2. Conclusion -- XIX. Superfluidity of two-dimensional and one-dimensional systems. 19.1. Phase transitions in two-dimensional systems. 19.2. Two-dimensional superfluidity. 19.3. Quantum vortices. 19.4. One-dimensional systems. 19.5. Superfluidity in Fermi films. Singlet pairing. 19.6. Triplet pairing. Thick films. 19.7. Model of [symbol]He-film. 19.8. Superfluid phases of a two-dimensional superfluid [symbol]He. 19.9. Bose-spectrum of the a-phase. 19.10. Bose-spectrum of the b-phase. 19.11. The two-dimensional superfluidity must exist! 19.12. New possibility for the search of 2D-superfluidity in [symbol]He-films -- XX. Bose-spectrum of superfluid solutions [symbol]He-[symbol]He. 20.1. Superfluidity of [symbol]He, dissolved in [symbol]He. 20.2. The case of s-pairing in [symbol]He. Effective action functional of the [symbol]He-[symbol]He solutions. 20.3. Bose-spectrum of the [symbol]He-[symbol]He solution. 20.4. The case of p-pairing. The effective action functional of the [symbol]He-[symbol]He solution. 20.5. Bose-spectrum of a solution of the type [symbol]He-B-[symbol]He. 20.6. Bose-spectrum of a system of the type [symbol]He-A-[symbol]He. 20.7. Bose-spectrum of films of the types [symbol]He-a-[symbol]He and [symbol]He-b-[symbol]He. 20.8. Conclusion -- XXI. Novel sound phenomena in impure superfluids. 21.1. Introduction. 21.2. Decoupling of first and second sound in pure superfluids. 21.3. Sounds coupling in impure superfluids. 21.4. Slow pressure (density) oscillations, fast temperature (entropy) oscillations. 21.5. Fast mode frequency shift at T[symbol](T[symbol]). 21.6. Difference in nature of first and second sound In impure superfluids. 21.7. Sound conversion phenomena. 21.8. Sound conversion experimens in pure superfluids. 21.9. Some possible new sound experiments in impure superfluids. 21.10. Coupling of two slow modes in superfluid [symbol]He-[symbol]He mixture in aerogel. 21.11. Nonlinear hydrodynamic equations for superfluid helium in aerogel. 21.12. Putterman's type equations. 21.13. Conclusion -- XXII. Path integral approach to the theory of crystals -- XXIII. Effective interaction of electrons near the Fermi-surface -- XXIV. The path integral models of p- and d-pairing for bulk superconductors. 24.1. Models of p- and d-pairing. 24.2. p-paring. 24.3. d-pairing -- XXV. High Temperature Superconductors (HTSC) and their physical properties. 25.1. The discovery of HTSC. 25.2. Physical properties of HTSC -- XXVI. Symmetry of order parameter in HTSC. 26.1. Introduction. 26.2. Symmetry classification of HTSC states. 26.3. Singlet states. 26.4. Pairing symmetry and pairing interactions. 26.5. Experimental symmetry probes. 26.6. Experimental evidence for [symbol] pairing. 26.7. Irradiation studies. 26.8. List of abridgements for chapters XXV and XXVI -- XXVII. D-pairing in HTSC. 27.1. Introduction. 27.2. Bulk HTSC under d-pairing -- XXVIII. How to distinguish the mixture of two d-wave states from pure d-wave state of HTSC. 28.1. The mixture of two d-wave states. 28.2. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors. 28.3. Conclusion -- XXIX. p-wave superconductors. 29.1. Introduction. 29.2. Bulk p-wave superconductivity -- XXX. Two dimensional p- and d-wave superconductivity. 30.1. Two-dimensional models of p- and d-pairing in USC. 30.2. p-pairing. 30.3. Two-dimensional d-wave superconductivity -- XXXI. Collective modes in the heavy-Fermion superconductors. 31.1. Physical properties of heavy-fermion superconductors. 31.2. Bulk heavy-fermion superconductors under d-pairing. 31.3. Conclusion -- XXXII. Other application of the theory of collective excitations. 32.1. Relativistic analogs of [symbol]He. This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF & SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique -- authors build the three- and two-dimensional models for s-, p- and d-wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3He, superfluid 4He, superfluid 3He-4He mixtures, superfluid 3He-films, superfluid 3He and superfluid 3He-4He mixtures in aerogel, high temperature superconductors, heavy-fermion superconductors, superconducting films etc. Authors compare their results with experimental data and predict a lot of new experiments on CMs study. This opens for experimentalists new possibilities for search of new intriguing features of collective behavior of UCSF & SC. The monograph creates the new scientific direction - the spectroscopy of collective modes in unconventional superfluids and superconductors. It will be useful for both theorists and experimentalists, studying superfluids and superconductors, low temperature physics, condensed matter physics, solid state physics. It could be used by graduate students specializing in the same areas. Print version record. Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Superfluidity. http://id.loc.gov/authorities/subjects/sh85130598 Superconductors. http://id.loc.gov/authorities/subjects/sh85130585 Collective excitations. http://id.loc.gov/authorities/subjects/sh85028096 Supraconductivité. Superfluidité. Supraconducteurs. Excitations collectives. superconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Collective excitations fast Superconductivity fast Superconductors fast Superfluidity fast Electronic book. Brusov, Pavel, 1979- https://id.oclc.org/worldcat/entity/E39PCjDfGxcPXTcphHkGrtJMT3 http://id.loc.gov/authorities/names/no2010045803 World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 has work: Collective excitations in unconventional superconductors and superfluids (Text) https://id.oclc.org/worldcat/entity/E39PCGwxV4Br7rJWVbPtbjDbcX https://id.oclc.org/worldcat/ontology/hasWork 9812771239 9789812771230 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340629 Volltext |
spellingShingle | Brusov, P. N. (Petr Nikitovich) Collective excitations in unconventional superconductors and superfluids / I. Functional integration method. 1.1. Functional integrals in statistical physics. 1.2. Functional integrals and diagram techniques for Bose-particles. 1.3. Functional integrals and diagram techniques for Fermi-particles. 1.4. Method of successive integration over fast and slow fields -- II. Collective excitations in superfluid Fermi-systems with s-pairing. 2.1. Effective action functional of the superfluid Fermi-gas. 2.2. Bose-spectrum of superfluid Fermi-gas. 2.3. Fermi-gas with Coulomb interaction -- III. Sound propagation in superfluid [symbol]He and superconductors. 3.1. Sound propagation in superfluid [symbol]He. 3.2. Sound propagation in conventional superconductors -- IV. Superfluid phases in [symbol]He. 4.1. Introduction : Fermi-systems with nontrivial pairing. 4.2. Properties of superfluid phases in [symbol]He -- V. The model of [symbol]He. 5.1. The path integral approach. 5.2. Kinetic equation method -- VI. Collective excitations in the B-phase of [symbol]He. 6.1. The quadratic form of action functional. 6.2. The collective mode frequencies. 6.3. Dispersion corrections to the collective mode spectrum. 6.4. The pair-breaking mode dispersion law. 6.5. Collective mode spectrum calculated by the kinetic equation method. 6.6. Fermi-liquid corrections. 6.7. Textural effects on the squashing modes. 6.8. Coupling of order-parameter collective modes to ultrasound -- VII. Collective excitations in the A-phase of [symbol]He. 7.1. A-phase of [symbol]He. 7.2. The collective mode spectrum in the absence of magnetic fields. 7.3. The latent symmetry, additional Goldstone modes, W-bosons. 7.4. The linear Zeeman effect for clapping- and pair-breaking modes. 7.5. Kinetic equation results on collective modes in A-phase. 7.6. Textural effects in A-phase -- VIII. Identification of [symbol]He by ultrasound experiments. 8.1. Introduction. 8.2. Mermin-Star's phase diagram analysis. 8.3. Axial phase. 8.4. Conclusion -- IX. Stability of Goldstone modes. 9.1. Stability of Goldstone-modes and their dispersion laws. 9.2. Stability of Goldstone-modes in the B-phase. 9.3. Stability of Goldstone-modes in the axial A-phase. 9.4. Stability of Goldstone-modes in the planar 2D-phase -- X. Influence of dipole interaction and magnetic field on collective excitations. 10.1. The influence of the dipole interaction on collective excitations. 10.2. The influence of the magnetic field on collective excitations. 10.3. Conclusion -- XI. The influence of the electric field on the collective excitations in [symbol]He and [symbol]He. 11.1. The energy spectrum and hydrodynamics of [symbol]He in a strong electric field (macroscopic approach). 11.2. Superfluid Bose-systems in the electric field (microscopic approach). 11.3. The effective action functional for the superfluid [symbol]He in the electric field. 11.4. The influence of the electric field on the Bose-spectrum in the B-phase. 11.5. The influence of the electric field on the Bose-spectrum in the A-phase -- XII. The order parameter distortion and collective modes in [symbol]He-B. 12.1. The external perturbations and the order parameter distortions. 12.2. The collective mode spectrum under the order parameter distortion. 12.3. Sound experiments at the absorption edge. 12.4. Subdominant f-wave pairing interactions in superfluid [symbol]He -- XIII. Splitting of the squashing mode and the method of superfluid velocity measurement in [symbol]He-B. 13.1. A doublet splitting of the squashing mode in superfluid [symbol]He-B. 13.2. The method of superfluid velocity measurement in [symbol]He-B -- XIV. Superfluid pPhase of[symbol]He-B near the boundary. 14.1. Introduction. 14.2. Transverse sound experiments. 14.3. Possible new phases near the boundary. 14.4. Different branches of squashing mode. 14.5. Deformed B-phase. 14.6. Conclusion -- XV. Collective excitations in the planar 2D-phase of superfluid [symbol]He. 15.1. The planar 2D-phase of superfluid [symbol]He. 15.2. Collective modes in [symbol]He-2D at zero momenta of excitations -- XVI. Dispersion induced splitting of the collective mode spectrum in axial- and planar-phases of superfluid [symbol]He. 16.1. Introduction. 16.2. Axial phase. 16.3. Planar phase. 16.4. Conclusion -- XVII. Collective excitations in the polar-phase. 17.1. Calculation of the collective mode spectrum. 17.2. Conclusion -- XVIII. Collective mode spectrum in A[symbol]-phase of superfluid [symbol]He. 18.1. Calculation of the collective mode spectrum. 18.2. Conclusion -- XIX. Superfluidity of two-dimensional and one-dimensional systems. 19.1. Phase transitions in two-dimensional systems. 19.2. Two-dimensional superfluidity. 19.3. Quantum vortices. 19.4. One-dimensional systems. 19.5. Superfluidity in Fermi films. Singlet pairing. 19.6. Triplet pairing. Thick films. 19.7. Model of [symbol]He-film. 19.8. Superfluid phases of a two-dimensional superfluid [symbol]He. 19.9. Bose-spectrum of the a-phase. 19.10. Bose-spectrum of the b-phase. 19.11. The two-dimensional superfluidity must exist! 19.12. New possibility for the search of 2D-superfluidity in [symbol]He-films -- XX. Bose-spectrum of superfluid solutions [symbol]He-[symbol]He. 20.1. Superfluidity of [symbol]He, dissolved in [symbol]He. 20.2. The case of s-pairing in [symbol]He. Effective action functional of the [symbol]He-[symbol]He solutions. 20.3. Bose-spectrum of the [symbol]He-[symbol]He solution. 20.4. The case of p-pairing. The effective action functional of the [symbol]He-[symbol]He solution. 20.5. Bose-spectrum of a solution of the type [symbol]He-B-[symbol]He. 20.6. Bose-spectrum of a system of the type [symbol]He-A-[symbol]He. 20.7. Bose-spectrum of films of the types [symbol]He-a-[symbol]He and [symbol]He-b-[symbol]He. 20.8. Conclusion -- XXI. Novel sound phenomena in impure superfluids. 21.1. Introduction. 21.2. Decoupling of first and second sound in pure superfluids. 21.3. Sounds coupling in impure superfluids. 21.4. Slow pressure (density) oscillations, fast temperature (entropy) oscillations. 21.5. Fast mode frequency shift at T[symbol](T[symbol]). 21.6. Difference in nature of first and second sound In impure superfluids. 21.7. Sound conversion phenomena. 21.8. Sound conversion experimens in pure superfluids. 21.9. Some possible new sound experiments in impure superfluids. 21.10. Coupling of two slow modes in superfluid [symbol]He-[symbol]He mixture in aerogel. 21.11. Nonlinear hydrodynamic equations for superfluid helium in aerogel. 21.12. Putterman's type equations. 21.13. Conclusion -- XXII. Path integral approach to the theory of crystals -- XXIII. Effective interaction of electrons near the Fermi-surface -- XXIV. The path integral models of p- and d-pairing for bulk superconductors. 24.1. Models of p- and d-pairing. 24.2. p-paring. 24.3. d-pairing -- XXV. High Temperature Superconductors (HTSC) and their physical properties. 25.1. The discovery of HTSC. 25.2. Physical properties of HTSC -- XXVI. Symmetry of order parameter in HTSC. 26.1. Introduction. 26.2. Symmetry classification of HTSC states. 26.3. Singlet states. 26.4. Pairing symmetry and pairing interactions. 26.5. Experimental symmetry probes. 26.6. Experimental evidence for [symbol] pairing. 26.7. Irradiation studies. 26.8. List of abridgements for chapters XXV and XXVI -- XXVII. D-pairing in HTSC. 27.1. Introduction. 27.2. Bulk HTSC under d-pairing -- XXVIII. How to distinguish the mixture of two d-wave states from pure d-wave state of HTSC. 28.1. The mixture of two d-wave states. 28.2. Equations for collective modes spectrum in a mixed d-wave state of unconventional superconductors. 28.3. Conclusion -- XXIX. p-wave superconductors. 29.1. Introduction. 29.2. Bulk p-wave superconductivity -- XXX. Two dimensional p- and d-wave superconductivity. 30.1. Two-dimensional models of p- and d-pairing in USC. 30.2. p-pairing. 30.3. Two-dimensional d-wave superconductivity -- XXXI. Collective modes in the heavy-Fermion superconductors. 31.1. Physical properties of heavy-fermion superconductors. 31.2. Bulk heavy-fermion superconductors under d-pairing. 31.3. Conclusion -- XXXII. Other application of the theory of collective excitations. 32.1. Relativistic analogs of [symbol]He. Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Superfluidity. http://id.loc.gov/authorities/subjects/sh85130598 Superconductors. http://id.loc.gov/authorities/subjects/sh85130585 Collective excitations. http://id.loc.gov/authorities/subjects/sh85028096 Supraconductivité. Superfluidité. Supraconducteurs. Excitations collectives. superconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Collective excitations fast Superconductivity fast Superconductors fast Superfluidity fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85130584 http://id.loc.gov/authorities/subjects/sh85130598 http://id.loc.gov/authorities/subjects/sh85130585 http://id.loc.gov/authorities/subjects/sh85028096 |
title | Collective excitations in unconventional superconductors and superfluids / |
title_auth | Collective excitations in unconventional superconductors and superfluids / |
title_exact_search | Collective excitations in unconventional superconductors and superfluids / |
title_full | Collective excitations in unconventional superconductors and superfluids / Peter Brusov, Pavel Brusov. |
title_fullStr | Collective excitations in unconventional superconductors and superfluids / Peter Brusov, Pavel Brusov. |
title_full_unstemmed | Collective excitations in unconventional superconductors and superfluids / Peter Brusov, Pavel Brusov. |
title_short | Collective excitations in unconventional superconductors and superfluids / |
title_sort | collective excitations in unconventional superconductors and superfluids |
topic | Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Superfluidity. http://id.loc.gov/authorities/subjects/sh85130598 Superconductors. http://id.loc.gov/authorities/subjects/sh85130585 Collective excitations. http://id.loc.gov/authorities/subjects/sh85028096 Supraconductivité. Superfluidité. Supraconducteurs. Excitations collectives. superconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Collective excitations fast Superconductivity fast Superconductors fast Superfluidity fast |
topic_facet | Superconductivity. Superfluidity. Superconductors. Collective excitations. Supraconductivité. Superfluidité. Supraconducteurs. Excitations collectives. superconductor. TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. Collective excitations Superconductivity Superconductors Superfluidity Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340629 |
work_keys_str_mv | AT brusovpn collectiveexcitationsinunconventionalsuperconductorsandsuperfluids AT brusovpavel collectiveexcitationsinunconventionalsuperconductorsandsuperfluids AT worldscientificfirm collectiveexcitationsinunconventionalsuperconductorsandsuperfluids |