Geometrical properties of vectors and convectors :: an introductory survey of differentiable manifolds, tensors and forms /
This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r- forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper un...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
©2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r- forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product. J M Domingos received his D Phil from the Universi. |
Beschreibung: | 1 online resource (vii, 73 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 69-70) and index. |
ISBN: | 9789812772756 9812772758 9789812700445 9812700447 128192444X 9781281924445 9786611924447 6611924442 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn614464290 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070315s2006 njua ob 001 0 eng d | ||
010 | |z 2007272630 | ||
040 | |a CaPaEBR |b eng |e pn |c ADU |d E7B |d OCLCQ |d COCUF |d N$T |d YDXCP |d IDEBK |d DKDLA |d OCLCQ |d OCLCF |d OCLCQ |d STF |d OCLCQ |d LGG |d MHW |d EBLCP |d DEBSZ |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d CCO |d PIFBR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d U3W |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d HS0 |d UWK |d OCLCQ |d UKCRE |d OCLCQ |d QGK |d OCLCO |d DST |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 181591795 |a 277199899 |a 474713756 |a 474829456 |a 647684748 |a 815750785 |a 820942641 |a 888835651 |a 961527045 |a 962671894 |a 966145136 |a 988455472 |a 991985035 |a 1037733120 |a 1038652422 |a 1045445088 |a 1055380407 |a 1062898588 |a 1081209933 |a 1109155550 |a 1110364262 |a 1153557298 |a 1162215584 |a 1227631761 |a 1228542397 |a 1241903216 |a 1259101041 |a 1290110834 |a 1300442041 |a 1303300153 |a 1303437106 |a 1306557808 | ||
020 | |a 9789812772756 |q (electronic bk.) | ||
020 | |a 9812772758 |q (electronic bk.) | ||
020 | |a 9789812700445 | ||
020 | |a 9812700447 | ||
020 | |a 128192444X | ||
020 | |a 9781281924445 | ||
020 | |a 9786611924447 | ||
020 | |a 6611924442 | ||
020 | |z 9812700447 | ||
035 | |a (OCoLC)614464290 |z (OCoLC)181591795 |z (OCoLC)277199899 |z (OCoLC)474713756 |z (OCoLC)474829456 |z (OCoLC)647684748 |z (OCoLC)815750785 |z (OCoLC)820942641 |z (OCoLC)888835651 |z (OCoLC)961527045 |z (OCoLC)962671894 |z (OCoLC)966145136 |z (OCoLC)988455472 |z (OCoLC)991985035 |z (OCoLC)1037733120 |z (OCoLC)1038652422 |z (OCoLC)1045445088 |z (OCoLC)1055380407 |z (OCoLC)1062898588 |z (OCoLC)1081209933 |z (OCoLC)1109155550 |z (OCoLC)1110364262 |z (OCoLC)1153557298 |z (OCoLC)1162215584 |z (OCoLC)1227631761 |z (OCoLC)1228542397 |z (OCoLC)1241903216 |z (OCoLC)1259101041 |z (OCoLC)1290110834 |z (OCoLC)1300442041 |z (OCoLC)1303300153 |z (OCoLC)1303437106 |z (OCoLC)1306557808 | ||
050 | 4 | |a QA433 |b .D66 2006eb | |
072 | 7 | |a MAT |x 033000 |2 bisacsh | |
072 | 7 | |a PBMZ, PH |2 bicssc | |
082 | 7 | |a 515/.63 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Domingos, Joaquim M. |0 http://id.loc.gov/authorities/names/n2007026042 | |
245 | 1 | 0 | |a Geometrical properties of vectors and convectors : |b an introductory survey of differentiable manifolds, tensors and forms / |c Joaquim M. Domingos. |
260 | |a Hackensack, NJ : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource (vii, 73 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
504 | |a Includes bibliographical references (pages 69-70) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Topological spaces -- 2. Metric tensor -- 3. Differentiable manifolds. 3.1 Basic definitions. 3.2. Tangent vectors and spaces. 3.3. Parallelization -- 4. Metric dual -- 5. Tensors -- 6. r-Forms -- 7. Orientation of a manifold -- 8. Hodge star operator -- 9. Wedge product and cross product. | |
520 | |a This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r- forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product. J M Domingos received his D Phil from the Universi. | ||
546 | |a English. | ||
650 | 0 | |a Vector analysis. |0 http://id.loc.gov/authorities/subjects/sh85142449 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 6 | |a Analyse vectorielle. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Vector Analysis. |2 bisacsh | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
650 | 7 | |a Vector analysis |2 fast | |
758 | |i has work: |a Geometrical properties of vectors and covectors (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXkD9yY8PCR9tPGDcBkjC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Domingos, Joaquim M. |t Geometrical properties of vectors and convectors. |d Hackensack, NJ : World Scientific, ©2006 |w (DLC) 2007272630 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210744 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684385 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1681226 | ||
938 | |a ebrary |b EBRY |n ebr10201445 | ||
938 | |a EBSCOhost |b EBSC |n 210744 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 192444 | ||
938 | |a YBP Library Services |b YANK |n 2736073 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn614464290 |
---|---|
_version_ | 1816881719575314432 |
adam_text | |
any_adam_object | |
author | Domingos, Joaquim M. |
author_GND | http://id.loc.gov/authorities/names/n2007026042 |
author_facet | Domingos, Joaquim M. |
author_role | |
author_sort | Domingos, Joaquim M. |
author_variant | j m d jm jmd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA433 |
callnumber-raw | QA433 .D66 2006eb |
callnumber-search | QA433 .D66 2006eb |
callnumber-sort | QA 3433 D66 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Topological spaces -- 2. Metric tensor -- 3. Differentiable manifolds. 3.1 Basic definitions. 3.2. Tangent vectors and spaces. 3.3. Parallelization -- 4. Metric dual -- 5. Tensors -- 6. r-Forms -- 7. Orientation of a manifold -- 8. Hodge star operator -- 9. Wedge product and cross product. |
ctrlnum | (OCoLC)614464290 |
dewey-full | 515/.63 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.63 |
dewey-search | 515/.63 |
dewey-sort | 3515 263 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04884cam a2200673Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn614464290</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">070315s2006 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2007272630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LGG</subfield><subfield code="d">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">HS0</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181591795</subfield><subfield code="a">277199899</subfield><subfield code="a">474713756</subfield><subfield code="a">474829456</subfield><subfield code="a">647684748</subfield><subfield code="a">815750785</subfield><subfield code="a">820942641</subfield><subfield code="a">888835651</subfield><subfield code="a">961527045</subfield><subfield code="a">962671894</subfield><subfield code="a">966145136</subfield><subfield code="a">988455472</subfield><subfield code="a">991985035</subfield><subfield code="a">1037733120</subfield><subfield code="a">1038652422</subfield><subfield code="a">1045445088</subfield><subfield code="a">1055380407</subfield><subfield code="a">1062898588</subfield><subfield code="a">1081209933</subfield><subfield code="a">1109155550</subfield><subfield code="a">1110364262</subfield><subfield code="a">1153557298</subfield><subfield code="a">1162215584</subfield><subfield code="a">1227631761</subfield><subfield code="a">1228542397</subfield><subfield code="a">1241903216</subfield><subfield code="a">1259101041</subfield><subfield code="a">1290110834</subfield><subfield code="a">1300442041</subfield><subfield code="a">1303300153</subfield><subfield code="a">1303437106</subfield><subfield code="a">1306557808</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812772756</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812772758</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812700445</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812700447</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128192444X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281924445</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611924447</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611924442</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812700447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)614464290</subfield><subfield code="z">(OCoLC)181591795</subfield><subfield code="z">(OCoLC)277199899</subfield><subfield code="z">(OCoLC)474713756</subfield><subfield code="z">(OCoLC)474829456</subfield><subfield code="z">(OCoLC)647684748</subfield><subfield code="z">(OCoLC)815750785</subfield><subfield code="z">(OCoLC)820942641</subfield><subfield code="z">(OCoLC)888835651</subfield><subfield code="z">(OCoLC)961527045</subfield><subfield code="z">(OCoLC)962671894</subfield><subfield code="z">(OCoLC)966145136</subfield><subfield code="z">(OCoLC)988455472</subfield><subfield code="z">(OCoLC)991985035</subfield><subfield code="z">(OCoLC)1037733120</subfield><subfield code="z">(OCoLC)1038652422</subfield><subfield code="z">(OCoLC)1045445088</subfield><subfield code="z">(OCoLC)1055380407</subfield><subfield code="z">(OCoLC)1062898588</subfield><subfield code="z">(OCoLC)1081209933</subfield><subfield code="z">(OCoLC)1109155550</subfield><subfield code="z">(OCoLC)1110364262</subfield><subfield code="z">(OCoLC)1153557298</subfield><subfield code="z">(OCoLC)1162215584</subfield><subfield code="z">(OCoLC)1227631761</subfield><subfield code="z">(OCoLC)1228542397</subfield><subfield code="z">(OCoLC)1241903216</subfield><subfield code="z">(OCoLC)1259101041</subfield><subfield code="z">(OCoLC)1290110834</subfield><subfield code="z">(OCoLC)1300442041</subfield><subfield code="z">(OCoLC)1303300153</subfield><subfield code="z">(OCoLC)1303437106</subfield><subfield code="z">(OCoLC)1306557808</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA433</subfield><subfield code="b">.D66 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">033000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBMZ, PH</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.63</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Domingos, Joaquim M.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2007026042</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrical properties of vectors and convectors :</subfield><subfield code="b">an introductory survey of differentiable manifolds, tensors and forms /</subfield><subfield code="c">Joaquim M. Domingos.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 73 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 69-70) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Topological spaces -- 2. Metric tensor -- 3. Differentiable manifolds. 3.1 Basic definitions. 3.2. Tangent vectors and spaces. 3.3. Parallelization -- 4. Metric dual -- 5. Tensors -- 6. r-Forms -- 7. Orientation of a manifold -- 8. Hodge star operator -- 9. Wedge product and cross product.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r- forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product. J M Domingos received his D Phil from the Universi.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Vector analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85142449</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse vectorielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Vector Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vector analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometrical properties of vectors and covectors (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXkD9yY8PCR9tPGDcBkjC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Domingos, Joaquim M.</subfield><subfield code="t">Geometrical properties of vectors and convectors.</subfield><subfield code="d">Hackensack, NJ : World Scientific, ©2006</subfield><subfield code="w">(DLC) 2007272630</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210744</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684385</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681226</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10201445</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210744</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">192444</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736073</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn614464290 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:11Z |
institution | BVB |
isbn | 9789812772756 9812772758 9789812700445 9812700447 128192444X 9781281924445 9786611924447 6611924442 |
language | English |
oclc_num | 614464290 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 73 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
spelling | Domingos, Joaquim M. http://id.loc.gov/authorities/names/n2007026042 Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / Joaquim M. Domingos. Hackensack, NJ : World Scientific, ©2006. 1 online resource (vii, 73 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Includes bibliographical references (pages 69-70) and index. Print version record. 1. Topological spaces -- 2. Metric tensor -- 3. Differentiable manifolds. 3.1 Basic definitions. 3.2. Tangent vectors and spaces. 3.3. Parallelization -- 4. Metric dual -- 5. Tensors -- 6. r-Forms -- 7. Orientation of a manifold -- 8. Hodge star operator -- 9. Wedge product and cross product. This is a brief introduction to some geometrical topics including topological spaces, the metric tensor, Euclidean space, manifolds, tensors, r- forms, the orientation of a manifold and the Hodge star operator. It provides the reader who is approaching the subject for the first time with a deeper understanding of the geometrical properties of vectors and covectors. The material prepares the reader for discussions on basic concepts such as the differential of a function as a covector, metric dual, inner product, wedge product and cross product. J M Domingos received his D Phil from the Universi. English. Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Analyse vectorielle. Variétés (Mathématiques) MATHEMATICS Vector Analysis. bisacsh Manifolds (Mathematics) fast Vector analysis fast has work: Geometrical properties of vectors and covectors (Text) https://id.oclc.org/worldcat/entity/E39PCGXkD9yY8PCR9tPGDcBkjC https://id.oclc.org/worldcat/ontology/hasWork Print version: Domingos, Joaquim M. Geometrical properties of vectors and convectors. Hackensack, NJ : World Scientific, ©2006 (DLC) 2007272630 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210744 Volltext |
spellingShingle | Domingos, Joaquim M. Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / 1. Topological spaces -- 2. Metric tensor -- 3. Differentiable manifolds. 3.1 Basic definitions. 3.2. Tangent vectors and spaces. 3.3. Parallelization -- 4. Metric dual -- 5. Tensors -- 6. r-Forms -- 7. Orientation of a manifold -- 8. Hodge star operator -- 9. Wedge product and cross product. Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Analyse vectorielle. Variétés (Mathématiques) MATHEMATICS Vector Analysis. bisacsh Manifolds (Mathematics) fast Vector analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85142449 http://id.loc.gov/authorities/subjects/sh85080549 |
title | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / |
title_auth | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / |
title_exact_search | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / |
title_full | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / Joaquim M. Domingos. |
title_fullStr | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / Joaquim M. Domingos. |
title_full_unstemmed | Geometrical properties of vectors and convectors : an introductory survey of differentiable manifolds, tensors and forms / Joaquim M. Domingos. |
title_short | Geometrical properties of vectors and convectors : |
title_sort | geometrical properties of vectors and convectors an introductory survey of differentiable manifolds tensors and forms |
title_sub | an introductory survey of differentiable manifolds, tensors and forms / |
topic | Vector analysis. http://id.loc.gov/authorities/subjects/sh85142449 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Analyse vectorielle. Variétés (Mathématiques) MATHEMATICS Vector Analysis. bisacsh Manifolds (Mathematics) fast Vector analysis fast |
topic_facet | Vector analysis. Manifolds (Mathematics) Analyse vectorielle. Variétés (Mathématiques) MATHEMATICS Vector Analysis. Vector analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210744 |
work_keys_str_mv | AT domingosjoaquimm geometricalpropertiesofvectorsandconvectorsanintroductorysurveyofdifferentiablemanifoldstensorsandforms |