Evolution equations and approximations /:
Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximat...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
River Edge, N.J. :
World Scientific,
©2002.
|
Schriftenreihe: | Series on advances in mathematics for applied sciences ;
v. 61. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR. |
Beschreibung: | 1 online resource (xiii, 498 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 489-492) and index. |
ISBN: | 9789812777294 9812777296 9789812380265 9812380264 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn614463806 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 020528s2002 njua ob 001 0 eng d | ||
040 | |a CaPaEBR |b eng |e pn |c ADU |d E7B |d OCLCQ |d CUY |d N$T |d YDXCP |d DKDLA |d OCLCQ |d OCLCO |d IDEBK |d OCLCF |d OCLCQ |d STF |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFBR |d OCLCQ |d JBG |d OCLCQ |d WRM |d OCLCQ |d VTS |d NRAMU |d VT2 |d OCLCQ |d AU@ |d M8D |d UKAHL |d OCLCQ |d K6U |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d CLOUD |d OCLCO | ||
019 | |a 181654802 |a 285162812 |a 474788498 |a 474829035 |a 647684345 |a 888835420 |a 961528884 |a 962596287 |a 988438674 |a 991987730 |a 1037700675 |a 1038660530 |a 1045437855 |a 1055366422 |a 1081277380 |a 1153457689 |a 1228594111 | ||
020 | |a 9789812777294 |q (electronic bk.) | ||
020 | |a 9812777296 |q (electronic bk.) | ||
020 | |a 9789812380265 |q (acid-free paper) | ||
020 | |a 9812380264 |q (acid-free paper) | ||
020 | |z 9812380264 |q (acid-free paper) | ||
035 | |a (OCoLC)614463806 |z (OCoLC)181654802 |z (OCoLC)285162812 |z (OCoLC)474788498 |z (OCoLC)474829035 |z (OCoLC)647684345 |z (OCoLC)888835420 |z (OCoLC)961528884 |z (OCoLC)962596287 |z (OCoLC)988438674 |z (OCoLC)991987730 |z (OCoLC)1037700675 |z (OCoLC)1038660530 |z (OCoLC)1045437855 |z (OCoLC)1055366422 |z (OCoLC)1081277380 |z (OCoLC)1153457689 |z (OCoLC)1228594111 | ||
050 | 4 | |a QA377 |b .I777 2002eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515/.353 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Ito, Kazufumi. | |
245 | 1 | 0 | |a Evolution equations and approximations / |c Kazufumi Ito, Franz Kappel. |
260 | |a River Edge, N.J. : |b World Scientific, |c ©2002. | ||
300 | |a 1 online resource (xiii, 498 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series on advances in mathematics for applied sciences ; |v v. 61 | |
504 | |a Includes bibliographical references (pages 489-492) and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR. | |
505 | 0 | |a Ch. 1. Dissipative and maximal monotone operators. 1.1. Duality mapping and directional derivatives of norms. 1.2. Dissipative operators. 1.3. Properties of m-dissipative operators. 1.4. Perturbation results for m-dissipative operators. 1.5. Maximal monotone operators. 1.6. Convex functionals and subdifferentials -- ch. 2. Linear semigroups. 2.1. Examples and basic definitions. 2.2. Cauchy problems and mild solutions. 2.3. The Hille-Yosida theorem. 2.4. The Lumer-Phillips theorem. 2.5. A second order equation -- ch. 3. Analytic semigroups. 3.1. Dissipative operators and sesquilinear forms. 3.2. Analytic semigroups -- ch. 4. Approximation of C[symbol]-semigroups. 4.1. The Trotter-Kato theorem. 4.2. Approximation of nonhomogeneous problems. 4.3. Variational formulations of the Trotter-Kato theorem. 4.4. An approximation result for analytic semigroups -- ch. 5. Nonlinear semigroups of contractions. 5.1. Generation of nonlinear semigroups. 5.2. Cauchy problems with dissipative operators. 5.3. The infinitesimal generator. 5.4. Nonlinear diffusion -- ch. 6. Locally quasi-dissipative evolution equations. 6.1. Locally quasi-dissipative operators. 6.2. Assumptions on the operators A(t). 6.3. DS-approximations and fundamental estimates. 6.4. Existence of DS-approximations. 6.5. Existence and uniqueness of mild solutions. 6.6. Autonomous problems. 6.7. "Nonhomogeneous" problems. 6.8. Strong solutions. 6.9. Quasi-linear equations. 6.10. A "parabolic" problem -- ch. 7. The Crandall-Pazy class. 7.1. The conditions. 7.2. Existence of an evolution operator -- ch. 8. Variational formulations and Gelfand triples. 8.1. Cauchy problems and Gelfand triples. 8.2. An approximation result -- ch. 9. Applications to concrete systems. 9.1. Delay-differential equations. 9.2. Scalar conservation laws. 9.3. The Navier-Stokes equations -- ch. 10. Approximation of solutions for evolution equations. 10.1. Approximation by approximating evolution problems. 10.2. Chernoff's theorem. 10.3. Operator splitt -- ch. 11. Semilinear evolution equations. 11.1. Well-posedness. 11.2. Delay equations with time and state dependent delays. 11.3. Approximation theory. 11.4. A concrete approximation scheme for delay systems. | |
650 | 0 | |a Evolution equations |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85046036 | |
650 | 0 | |a Approximation theory. |0 http://id.loc.gov/authorities/subjects/sh85006190 | |
650 | 6 | |a Équations d'évolution |x Solutions numériques. | |
650 | 6 | |a Théorie de l'approximation. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Approximation theory |2 fast | |
650 | 7 | |a Evolution equations |x Numerical solutions |2 fast | |
655 | 0 | |a Electronic books. | |
700 | 1 | |a Kappel, F. | |
758 | |i has work: |a Evolution equations and approximations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG7fD3F4yGGhQHhTFYFVG3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ito, Kazufumi. |t Evolution equations and approximations. |d River Edge, N.J. : World Scientific, ©2002 |z 9812380264 |z 9789812380265 |w (DLC) 2002072092 |w (OCoLC)49936144 |
830 | 0 | |a Series on advances in mathematics for applied sciences ; |v v. 61. |0 http://id.loc.gov/authorities/names/n90710999 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210766 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210766 |3 Volltext |
938 | |a cloudLibrary |b CLDL |n 9789812777294 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684719 | ||
938 | |a ebrary |b EBRY |n ebr10201327 | ||
938 | |a EBSCOhost |b EBSC |n 210766 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26007459 | ||
938 | |a YBP Library Services |b YANK |n 2736148 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn614463806 |
---|---|
_version_ | 1829094664467120129 |
adam_text | |
any_adam_object | |
author | Ito, Kazufumi |
author2 | Kappel, F. |
author2_role | |
author2_variant | f k fk |
author_facet | Ito, Kazufumi Kappel, F. |
author_role | |
author_sort | Ito, Kazufumi |
author_variant | k i ki |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .I777 2002eb |
callnumber-search | QA377 .I777 2002eb |
callnumber-sort | QA 3377 I777 42002EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Ch. 1. Dissipative and maximal monotone operators. 1.1. Duality mapping and directional derivatives of norms. 1.2. Dissipative operators. 1.3. Properties of m-dissipative operators. 1.4. Perturbation results for m-dissipative operators. 1.5. Maximal monotone operators. 1.6. Convex functionals and subdifferentials -- ch. 2. Linear semigroups. 2.1. Examples and basic definitions. 2.2. Cauchy problems and mild solutions. 2.3. The Hille-Yosida theorem. 2.4. The Lumer-Phillips theorem. 2.5. A second order equation -- ch. 3. Analytic semigroups. 3.1. Dissipative operators and sesquilinear forms. 3.2. Analytic semigroups -- ch. 4. Approximation of C[symbol]-semigroups. 4.1. The Trotter-Kato theorem. 4.2. Approximation of nonhomogeneous problems. 4.3. Variational formulations of the Trotter-Kato theorem. 4.4. An approximation result for analytic semigroups -- ch. 5. Nonlinear semigroups of contractions. 5.1. Generation of nonlinear semigroups. 5.2. Cauchy problems with dissipative operators. 5.3. The infinitesimal generator. 5.4. Nonlinear diffusion -- ch. 6. Locally quasi-dissipative evolution equations. 6.1. Locally quasi-dissipative operators. 6.2. Assumptions on the operators A(t). 6.3. DS-approximations and fundamental estimates. 6.4. Existence of DS-approximations. 6.5. Existence and uniqueness of mild solutions. 6.6. Autonomous problems. 6.7. "Nonhomogeneous" problems. 6.8. Strong solutions. 6.9. Quasi-linear equations. 6.10. A "parabolic" problem -- ch. 7. The Crandall-Pazy class. 7.1. The conditions. 7.2. Existence of an evolution operator -- ch. 8. Variational formulations and Gelfand triples. 8.1. Cauchy problems and Gelfand triples. 8.2. An approximation result -- ch. 9. Applications to concrete systems. 9.1. Delay-differential equations. 9.2. Scalar conservation laws. 9.3. The Navier-Stokes equations -- ch. 10. Approximation of solutions for evolution equations. 10.1. Approximation by approximating evolution problems. 10.2. Chernoff's theorem. 10.3. Operator splitt -- ch. 11. Semilinear evolution equations. 11.1. Well-posedness. 11.2. Delay equations with time and state dependent delays. 11.3. Approximation theory. 11.4. A concrete approximation scheme for delay systems. |
ctrlnum | (OCoLC)614463806 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06284cam a2200625Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn614463806</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">020528s2002 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">CLOUD</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181654802</subfield><subfield code="a">285162812</subfield><subfield code="a">474788498</subfield><subfield code="a">474829035</subfield><subfield code="a">647684345</subfield><subfield code="a">888835420</subfield><subfield code="a">961528884</subfield><subfield code="a">962596287</subfield><subfield code="a">988438674</subfield><subfield code="a">991987730</subfield><subfield code="a">1037700675</subfield><subfield code="a">1038660530</subfield><subfield code="a">1045437855</subfield><subfield code="a">1055366422</subfield><subfield code="a">1081277380</subfield><subfield code="a">1153457689</subfield><subfield code="a">1228594111</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777294</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812777296</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812380265</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812380264</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812380264</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)614463806</subfield><subfield code="z">(OCoLC)181654802</subfield><subfield code="z">(OCoLC)285162812</subfield><subfield code="z">(OCoLC)474788498</subfield><subfield code="z">(OCoLC)474829035</subfield><subfield code="z">(OCoLC)647684345</subfield><subfield code="z">(OCoLC)888835420</subfield><subfield code="z">(OCoLC)961528884</subfield><subfield code="z">(OCoLC)962596287</subfield><subfield code="z">(OCoLC)988438674</subfield><subfield code="z">(OCoLC)991987730</subfield><subfield code="z">(OCoLC)1037700675</subfield><subfield code="z">(OCoLC)1038660530</subfield><subfield code="z">(OCoLC)1045437855</subfield><subfield code="z">(OCoLC)1055366422</subfield><subfield code="z">(OCoLC)1081277380</subfield><subfield code="z">(OCoLC)1153457689</subfield><subfield code="z">(OCoLC)1228594111</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.I777 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ito, Kazufumi.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution equations and approximations /</subfield><subfield code="c">Kazufumi Ito, Franz Kappel.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 498 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 61</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 489-492) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Dissipative and maximal monotone operators. 1.1. Duality mapping and directional derivatives of norms. 1.2. Dissipative operators. 1.3. Properties of m-dissipative operators. 1.4. Perturbation results for m-dissipative operators. 1.5. Maximal monotone operators. 1.6. Convex functionals and subdifferentials -- ch. 2. Linear semigroups. 2.1. Examples and basic definitions. 2.2. Cauchy problems and mild solutions. 2.3. The Hille-Yosida theorem. 2.4. The Lumer-Phillips theorem. 2.5. A second order equation -- ch. 3. Analytic semigroups. 3.1. Dissipative operators and sesquilinear forms. 3.2. Analytic semigroups -- ch. 4. Approximation of C[symbol]-semigroups. 4.1. The Trotter-Kato theorem. 4.2. Approximation of nonhomogeneous problems. 4.3. Variational formulations of the Trotter-Kato theorem. 4.4. An approximation result for analytic semigroups -- ch. 5. Nonlinear semigroups of contractions. 5.1. Generation of nonlinear semigroups. 5.2. Cauchy problems with dissipative operators. 5.3. The infinitesimal generator. 5.4. Nonlinear diffusion -- ch. 6. Locally quasi-dissipative evolution equations. 6.1. Locally quasi-dissipative operators. 6.2. Assumptions on the operators A(t). 6.3. DS-approximations and fundamental estimates. 6.4. Existence of DS-approximations. 6.5. Existence and uniqueness of mild solutions. 6.6. Autonomous problems. 6.7. "Nonhomogeneous" problems. 6.8. Strong solutions. 6.9. Quasi-linear equations. 6.10. A "parabolic" problem -- ch. 7. The Crandall-Pazy class. 7.1. The conditions. 7.2. Existence of an evolution operator -- ch. 8. Variational formulations and Gelfand triples. 8.1. Cauchy problems and Gelfand triples. 8.2. An approximation result -- ch. 9. Applications to concrete systems. 9.1. Delay-differential equations. 9.2. Scalar conservation laws. 9.3. The Navier-Stokes equations -- ch. 10. Approximation of solutions for evolution equations. 10.1. Approximation by approximating evolution problems. 10.2. Chernoff's theorem. 10.3. Operator splitt -- ch. 11. Semilinear evolution equations. 11.1. Well-posedness. 11.2. Delay equations with time and state dependent delays. 11.3. Approximation theory. 11.4. A concrete approximation scheme for delay systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Evolution equations</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85046036</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Approximation theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85006190</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations d'évolution</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de l'approximation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution equations</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kappel, F.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Evolution equations and approximations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG7fD3F4yGGhQHhTFYFVG3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ito, Kazufumi.</subfield><subfield code="t">Evolution equations and approximations.</subfield><subfield code="d">River Edge, N.J. : World Scientific, ©2002</subfield><subfield code="z">9812380264</subfield><subfield code="z">9789812380265</subfield><subfield code="w">(DLC) 2002072092</subfield><subfield code="w">(OCoLC)49936144</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences ;</subfield><subfield code="v">v. 61.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90710999</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210766</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210766</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">cloudLibrary</subfield><subfield code="b">CLDL</subfield><subfield code="n">9789812777294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684719</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10201327</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210766</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26007459</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736148</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn614463806 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:36:43Z |
institution | BVB |
isbn | 9789812777294 9812777296 9789812380265 9812380264 |
language | English |
oclc_num | 614463806 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 498 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | Series on advances in mathematics for applied sciences ; |
series2 | Series on advances in mathematics for applied sciences ; |
spelling | Ito, Kazufumi. Evolution equations and approximations / Kazufumi Ito, Franz Kappel. River Edge, N.J. : World Scientific, ©2002. 1 online resource (xiii, 498 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series on advances in mathematics for applied sciences ; v. 61 Includes bibliographical references (pages 489-492) and index. Print version record. Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR. Ch. 1. Dissipative and maximal monotone operators. 1.1. Duality mapping and directional derivatives of norms. 1.2. Dissipative operators. 1.3. Properties of m-dissipative operators. 1.4. Perturbation results for m-dissipative operators. 1.5. Maximal monotone operators. 1.6. Convex functionals and subdifferentials -- ch. 2. Linear semigroups. 2.1. Examples and basic definitions. 2.2. Cauchy problems and mild solutions. 2.3. The Hille-Yosida theorem. 2.4. The Lumer-Phillips theorem. 2.5. A second order equation -- ch. 3. Analytic semigroups. 3.1. Dissipative operators and sesquilinear forms. 3.2. Analytic semigroups -- ch. 4. Approximation of C[symbol]-semigroups. 4.1. The Trotter-Kato theorem. 4.2. Approximation of nonhomogeneous problems. 4.3. Variational formulations of the Trotter-Kato theorem. 4.4. An approximation result for analytic semigroups -- ch. 5. Nonlinear semigroups of contractions. 5.1. Generation of nonlinear semigroups. 5.2. Cauchy problems with dissipative operators. 5.3. The infinitesimal generator. 5.4. Nonlinear diffusion -- ch. 6. Locally quasi-dissipative evolution equations. 6.1. Locally quasi-dissipative operators. 6.2. Assumptions on the operators A(t). 6.3. DS-approximations and fundamental estimates. 6.4. Existence of DS-approximations. 6.5. Existence and uniqueness of mild solutions. 6.6. Autonomous problems. 6.7. "Nonhomogeneous" problems. 6.8. Strong solutions. 6.9. Quasi-linear equations. 6.10. A "parabolic" problem -- ch. 7. The Crandall-Pazy class. 7.1. The conditions. 7.2. Existence of an evolution operator -- ch. 8. Variational formulations and Gelfand triples. 8.1. Cauchy problems and Gelfand triples. 8.2. An approximation result -- ch. 9. Applications to concrete systems. 9.1. Delay-differential equations. 9.2. Scalar conservation laws. 9.3. The Navier-Stokes equations -- ch. 10. Approximation of solutions for evolution equations. 10.1. Approximation by approximating evolution problems. 10.2. Chernoff's theorem. 10.3. Operator splitt -- ch. 11. Semilinear evolution equations. 11.1. Well-posedness. 11.2. Delay equations with time and state dependent delays. 11.3. Approximation theory. 11.4. A concrete approximation scheme for delay systems. Evolution equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85046036 Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Équations d'évolution Solutions numériques. Théorie de l'approximation. MATHEMATICS Differential Equations Partial. bisacsh Approximation theory fast Evolution equations Numerical solutions fast Electronic books. Kappel, F. has work: Evolution equations and approximations (Text) https://id.oclc.org/worldcat/entity/E39PCG7fD3F4yGGhQHhTFYFVG3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Ito, Kazufumi. Evolution equations and approximations. River Edge, N.J. : World Scientific, ©2002 9812380264 9789812380265 (DLC) 2002072092 (OCoLC)49936144 Series on advances in mathematics for applied sciences ; v. 61. http://id.loc.gov/authorities/names/n90710999 |
spellingShingle | Ito, Kazufumi Evolution equations and approximations / Series on advances in mathematics for applied sciences ; Ch. 1. Dissipative and maximal monotone operators. 1.1. Duality mapping and directional derivatives of norms. 1.2. Dissipative operators. 1.3. Properties of m-dissipative operators. 1.4. Perturbation results for m-dissipative operators. 1.5. Maximal monotone operators. 1.6. Convex functionals and subdifferentials -- ch. 2. Linear semigroups. 2.1. Examples and basic definitions. 2.2. Cauchy problems and mild solutions. 2.3. The Hille-Yosida theorem. 2.4. The Lumer-Phillips theorem. 2.5. A second order equation -- ch. 3. Analytic semigroups. 3.1. Dissipative operators and sesquilinear forms. 3.2. Analytic semigroups -- ch. 4. Approximation of C[symbol]-semigroups. 4.1. The Trotter-Kato theorem. 4.2. Approximation of nonhomogeneous problems. 4.3. Variational formulations of the Trotter-Kato theorem. 4.4. An approximation result for analytic semigroups -- ch. 5. Nonlinear semigroups of contractions. 5.1. Generation of nonlinear semigroups. 5.2. Cauchy problems with dissipative operators. 5.3. The infinitesimal generator. 5.4. Nonlinear diffusion -- ch. 6. Locally quasi-dissipative evolution equations. 6.1. Locally quasi-dissipative operators. 6.2. Assumptions on the operators A(t). 6.3. DS-approximations and fundamental estimates. 6.4. Existence of DS-approximations. 6.5. Existence and uniqueness of mild solutions. 6.6. Autonomous problems. 6.7. "Nonhomogeneous" problems. 6.8. Strong solutions. 6.9. Quasi-linear equations. 6.10. A "parabolic" problem -- ch. 7. The Crandall-Pazy class. 7.1. The conditions. 7.2. Existence of an evolution operator -- ch. 8. Variational formulations and Gelfand triples. 8.1. Cauchy problems and Gelfand triples. 8.2. An approximation result -- ch. 9. Applications to concrete systems. 9.1. Delay-differential equations. 9.2. Scalar conservation laws. 9.3. The Navier-Stokes equations -- ch. 10. Approximation of solutions for evolution equations. 10.1. Approximation by approximating evolution problems. 10.2. Chernoff's theorem. 10.3. Operator splitt -- ch. 11. Semilinear evolution equations. 11.1. Well-posedness. 11.2. Delay equations with time and state dependent delays. 11.3. Approximation theory. 11.4. A concrete approximation scheme for delay systems. Evolution equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85046036 Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Équations d'évolution Solutions numériques. Théorie de l'approximation. MATHEMATICS Differential Equations Partial. bisacsh Approximation theory fast Evolution equations Numerical solutions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85046036 http://id.loc.gov/authorities/subjects/sh85006190 |
title | Evolution equations and approximations / |
title_auth | Evolution equations and approximations / |
title_exact_search | Evolution equations and approximations / |
title_full | Evolution equations and approximations / Kazufumi Ito, Franz Kappel. |
title_fullStr | Evolution equations and approximations / Kazufumi Ito, Franz Kappel. |
title_full_unstemmed | Evolution equations and approximations / Kazufumi Ito, Franz Kappel. |
title_short | Evolution equations and approximations / |
title_sort | evolution equations and approximations |
topic | Evolution equations Numerical solutions. http://id.loc.gov/authorities/subjects/sh85046036 Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Équations d'évolution Solutions numériques. Théorie de l'approximation. MATHEMATICS Differential Equations Partial. bisacsh Approximation theory fast Evolution equations Numerical solutions fast |
topic_facet | Evolution equations Numerical solutions. Approximation theory. Équations d'évolution Solutions numériques. Théorie de l'approximation. MATHEMATICS Differential Equations Partial. Approximation theory Evolution equations Numerical solutions Electronic books. |
work_keys_str_mv | AT itokazufumi evolutionequationsandapproximations AT kappelf evolutionequationsandapproximations |