Exact analysis of bi-periodic structures /:
Annotation Presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey :
World Scientific,
©2002.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation Presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution. |
Beschreibung: | 1 online resource (ix, 269 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 263-264) and index. |
ISBN: | 9789812777621 9812777628 9789810249281 9810249284 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn614463189 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 020702s2002 njua ob 001 0 eng d | ||
010 | |z 2002282961 | ||
040 | |a CaPaEBR |b eng |e pn |c ADU |d E7B |d OCLCQ |d COCUF |d N$T |d YDXCP |d DKDLA |d OCLCQ |d IDEBK |d NTE |d OCLCF |d OCLCO |d OCLCQ |d EBLCP |d OCLCQ |d AZK |d AGLDB |d MOR |d PIFBR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d UKCRE |d HS0 |d OCLCQ |d OCLCO |d MHW |d DST |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d INARC | ||
015 | |a GBA341543 |2 bnb | ||
019 | |a 181652426 |a 277199770 |a 474661132 |a 474788158 |a 647683551 |a 872009772 |a 879074411 |a 888834905 |a 961534737 |a 962606788 |a 988452931 |a 992102606 |a 1037718707 |a 1038566291 |a 1045437464 |a 1055363086 |a 1058642967 |a 1064880847 |a 1081284206 |a 1153546216 |a 1162472083 |a 1227645683 |a 1228574117 |a 1241777263 |a 1259138981 |a 1290089171 |a 1300511602 |a 1303359245 |a 1303505038 |a 1306565914 |a 1398135939 |a 1409719357 |a 1424689518 |a 1450138991 | ||
020 | |a 9789812777621 |q (electronic bk.) | ||
020 | |a 9812777628 |q (electronic bk.) | ||
020 | |a 9789810249281 | ||
020 | |a 9810249284 | ||
020 | |z 9810249284 | ||
035 | |a (OCoLC)614463189 |z (OCoLC)181652426 |z (OCoLC)277199770 |z (OCoLC)474661132 |z (OCoLC)474788158 |z (OCoLC)647683551 |z (OCoLC)872009772 |z (OCoLC)879074411 |z (OCoLC)888834905 |z (OCoLC)961534737 |z (OCoLC)962606788 |z (OCoLC)988452931 |z (OCoLC)992102606 |z (OCoLC)1037718707 |z (OCoLC)1038566291 |z (OCoLC)1045437464 |z (OCoLC)1055363086 |z (OCoLC)1058642967 |z (OCoLC)1064880847 |z (OCoLC)1081284206 |z (OCoLC)1153546216 |z (OCoLC)1162472083 |z (OCoLC)1227645683 |z (OCoLC)1228574117 |z (OCoLC)1241777263 |z (OCoLC)1259138981 |z (OCoLC)1290089171 |z (OCoLC)1300511602 |z (OCoLC)1303359245 |z (OCoLC)1303505038 |z (OCoLC)1306565914 |z (OCoLC)1398135939 |z (OCoLC)1409719357 |z (OCoLC)1424689518 |z (OCoLC)1450138991 | ||
050 | 4 | |a TA645 |b .C24 2002eb | |
072 | 7 | |a TEC |x 063000 |2 bisacsh | |
072 | 7 | |a TBJ |2 bicssc | |
072 | 7 | |a PDE |2 bicssc | |
072 | 7 | |a PNRP |2 bicssc | |
072 | 7 | |a TGB |2 bicssc | |
082 | 7 | |a 624.1/71 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Cai, C. W. |0 http://id.loc.gov/authorities/names/no99055271 | |
245 | 1 | 0 | |a Exact analysis of bi-periodic structures / |c C.W. Cai, J.K. Liu, H.C. Chan. |
246 | 3 | 0 | |a Bi-periodic structures |
260 | |a New Jersey : |b World Scientific, |c ©2002. | ||
300 | |a 1 online resource (ix, 269 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 263-264) and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a Annotation Presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution. | |
505 | 0 | |a Preface; CONTENTS; Chapter 1 U Transformation and Uncoupling of Governing Equations for Systems with Cyclic Bi-periodicity; 1.1 Dynamic Properties of Structures with Cyclic Periodicity; 1.1.1 Governing Equation; 1.1.2 U Matrix and Cyclic Matrix; 1.1.3 U Transformation and Uncoupling of Simultaneous Equations with Cyclic Periodicity; 1.1.4 Dynamic Properties of Cyclic Periodic Structures; 1.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts; 1.2.1 Double U Transformation. | |
505 | 8 | |a 1.2.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts1.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity; 1.3.1 Cyclic Bi-periodic Equation; 1.3.2 Uncoupling of Cyclic Bi-periodic Equations; 1.3.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity for Variables with Two Subscripts; Chapter 2 Bi-periodic Mass-Spring Systems; 2.1 Cyclic Bi-periodic Mass-Spring System; 2.1.1 Static Solution; 2.1.1a Example; 2.1.2 Natural Vibration; 2.1.2a Example; 2.1.3 Forced Vibration; 2.1.3a Example. | |
505 | 8 | |a 2.2 Linear Bi-periodic Mass-Spring Systems2.2.1 Bi-periodic Mass-Spring System with Fixed Extreme Ends; 2.2.1a Natural Vibration Example; 2.2.1b Forced Vibration Example; 2.2.2 Bi-periodic Mass-Spring System with Free Extreme Ends; 2.2.2a Natural Vibration Example; 2.2.2b Forced Vibration Example; 2.2.3 Bi-periodic Mass-Spring System with One End Fixed And The Other Free; 2.2.3a Natural Vibration Example; Chapter 3 Bi-periodic Structures; 3.1 Continuous Trusses with Equidistant Supports; 3.1.1 Governing Equation; 3.1.2 Static Solution [11]; 3.1.2a Example; 3.1.3 Natural Vibration [12]. | |
505 | 8 | |a 3.1.3a Example3.1.4 Forced Vibration[12]; 3.1.4a Example; 3.2 Continuous Beam with Equidistant Roller and Spring Supports [10]; 3.2.1 Governing Equation and Static Solution; 3.2.2 Example; Chapter 4 Structures with Bi-periodicity in Two Directions; 4.1 Cable Networks with Periodic Supports; 4.1.1 Static Solution; 4.1.1a Example; 4.1.2 Natural Vibration[19]; 4.1.2a Example; 4.1.3 Forced Vibration [19]; 4.1.3a Example; 4.2 Grillwork with Periodic Supports[18]; 4.2.1 Governing Equation; 4.2.2 Static Solution; 4.2.3 Example; 4.3 Grillwork with Periodic Stiffened Beams; 4.3.1 Governing Equation. | |
505 | 8 | |a 4.3.2 Static Solution4.3.3 Example; Chapter 5 Nearly Periodic Systems with Nonlinear Disorders; 5.1 Periodic System with Nonlinear Disorders -- Mono-coupled System [21]; 5.1.1 Governing Equation; 5.1.2 Localized Modes in the System with One Nonlinear Disorder; 5.1.3 Localized Modes in the System with Two Nonlinear Disorders; 5.2 Periodic System with One Nonlinear Disorder -Two-degree-coupling System[22]; 5.2.1 Governing Equation; 5.2.2 Perturbation Solution; 5.2.3 Localized Modes; 5.3 Damped Periodic Systems with One Nonlinear Disorder[23]; 5.3.1 Forced Vibration Equation. | |
546 | |a English. | ||
650 | 0 | |a Structural analysis (Engineering) |0 http://id.loc.gov/authorities/subjects/sh85129216 | |
650 | 0 | |a Mechanics, Analytic. |0 http://id.loc.gov/authorities/subjects/sh85082768 | |
650 | 0 | |a Transformation groups. |0 http://id.loc.gov/authorities/subjects/sh85136917 | |
650 | 6 | |a Théorie des constructions. | |
650 | 6 | |a Mécanique analytique. | |
650 | 6 | |a Groupes de transformations. | |
650 | 7 | |a structural analysis. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Structural. |2 bisacsh | |
650 | 7 | |a Mechanics, Analytic |2 fast | |
650 | 7 | |a Structural analysis (Engineering) |2 fast | |
650 | 7 | |a Transformation groups |2 fast | |
700 | 1 | |a Liu, J. K. |0 http://id.loc.gov/authorities/names/no2002066000 | |
700 | 1 | |a Chan, H. C. |q (Hon Chuen) |1 https://id.oclc.org/worldcat/entity/E39PCjqv9M7C63qxq8G3YcDYvb |0 http://id.loc.gov/authorities/names/no99055254 | |
758 | |i has work: |a Exact analysis of bi-periodic structures (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGbCtxjxrjhHCbVbJJFTxP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Cai, C.W. |t Exact analysis of bi-periodic structures. |d New Jersey : World Scientific, ©2002 |z 9810249284 |z 9789810249281 |w (DLC) 2002282961 |w (OCoLC)50725701 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210665 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684744 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1681563 | ||
938 | |a ebrary |b EBRY |n ebr10201227 | ||
938 | |a EBSCOhost |b EBSC |n 210665 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26007497 | ||
938 | |a YBP Library Services |b YANK |n 2736157 | ||
938 | |a Internet Archive |b INAR |n exactanalysisofb0000caic | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn614463189 |
---|---|
_version_ | 1816881719478845440 |
adam_text | |
any_adam_object | |
author | Cai, C. W. |
author2 | Liu, J. K. Chan, H. C. (Hon Chuen) |
author2_role | |
author2_variant | j k l jk jkl h c c hc hcc |
author_GND | http://id.loc.gov/authorities/names/no99055271 http://id.loc.gov/authorities/names/no2002066000 http://id.loc.gov/authorities/names/no99055254 |
author_facet | Cai, C. W. Liu, J. K. Chan, H. C. (Hon Chuen) |
author_role | |
author_sort | Cai, C. W. |
author_variant | c w c cw cwc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA645 |
callnumber-raw | TA645 .C24 2002eb |
callnumber-search | TA645 .C24 2002eb |
callnumber-sort | TA 3645 C24 42002EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Preface; CONTENTS; Chapter 1 U Transformation and Uncoupling of Governing Equations for Systems with Cyclic Bi-periodicity; 1.1 Dynamic Properties of Structures with Cyclic Periodicity; 1.1.1 Governing Equation; 1.1.2 U Matrix and Cyclic Matrix; 1.1.3 U Transformation and Uncoupling of Simultaneous Equations with Cyclic Periodicity; 1.1.4 Dynamic Properties of Cyclic Periodic Structures; 1.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts; 1.2.1 Double U Transformation. 1.2.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts1.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity; 1.3.1 Cyclic Bi-periodic Equation; 1.3.2 Uncoupling of Cyclic Bi-periodic Equations; 1.3.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity for Variables with Two Subscripts; Chapter 2 Bi-periodic Mass-Spring Systems; 2.1 Cyclic Bi-periodic Mass-Spring System; 2.1.1 Static Solution; 2.1.1a Example; 2.1.2 Natural Vibration; 2.1.2a Example; 2.1.3 Forced Vibration; 2.1.3a Example. 2.2 Linear Bi-periodic Mass-Spring Systems2.2.1 Bi-periodic Mass-Spring System with Fixed Extreme Ends; 2.2.1a Natural Vibration Example; 2.2.1b Forced Vibration Example; 2.2.2 Bi-periodic Mass-Spring System with Free Extreme Ends; 2.2.2a Natural Vibration Example; 2.2.2b Forced Vibration Example; 2.2.3 Bi-periodic Mass-Spring System with One End Fixed And The Other Free; 2.2.3a Natural Vibration Example; Chapter 3 Bi-periodic Structures; 3.1 Continuous Trusses with Equidistant Supports; 3.1.1 Governing Equation; 3.1.2 Static Solution [11]; 3.1.2a Example; 3.1.3 Natural Vibration [12]. 3.1.3a Example3.1.4 Forced Vibration[12]; 3.1.4a Example; 3.2 Continuous Beam with Equidistant Roller and Spring Supports [10]; 3.2.1 Governing Equation and Static Solution; 3.2.2 Example; Chapter 4 Structures with Bi-periodicity in Two Directions; 4.1 Cable Networks with Periodic Supports; 4.1.1 Static Solution; 4.1.1a Example; 4.1.2 Natural Vibration[19]; 4.1.2a Example; 4.1.3 Forced Vibration [19]; 4.1.3a Example; 4.2 Grillwork with Periodic Supports[18]; 4.2.1 Governing Equation; 4.2.2 Static Solution; 4.2.3 Example; 4.3 Grillwork with Periodic Stiffened Beams; 4.3.1 Governing Equation. 4.3.2 Static Solution4.3.3 Example; Chapter 5 Nearly Periodic Systems with Nonlinear Disorders; 5.1 Periodic System with Nonlinear Disorders -- Mono-coupled System [21]; 5.1.1 Governing Equation; 5.1.2 Localized Modes in the System with One Nonlinear Disorder; 5.1.3 Localized Modes in the System with Two Nonlinear Disorders; 5.2 Periodic System with One Nonlinear Disorder -Two-degree-coupling System[22]; 5.2.1 Governing Equation; 5.2.2 Perturbation Solution; 5.2.3 Localized Modes; 5.3 Damped Periodic Systems with One Nonlinear Disorder[23]; 5.3.1 Forced Vibration Equation. |
ctrlnum | (OCoLC)614463189 |
dewey-full | 624.1/71 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1/71 |
dewey-search | 624.1/71 |
dewey-sort | 3624.1 271 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07666cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn614463189</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">020702s2002 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2002282961</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaPaEBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">NTE</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">UKCRE</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MHW</subfield><subfield code="d">DST</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">INARC</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA341543</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181652426</subfield><subfield code="a">277199770</subfield><subfield code="a">474661132</subfield><subfield code="a">474788158</subfield><subfield code="a">647683551</subfield><subfield code="a">872009772</subfield><subfield code="a">879074411</subfield><subfield code="a">888834905</subfield><subfield code="a">961534737</subfield><subfield code="a">962606788</subfield><subfield code="a">988452931</subfield><subfield code="a">992102606</subfield><subfield code="a">1037718707</subfield><subfield code="a">1038566291</subfield><subfield code="a">1045437464</subfield><subfield code="a">1055363086</subfield><subfield code="a">1058642967</subfield><subfield code="a">1064880847</subfield><subfield code="a">1081284206</subfield><subfield code="a">1153546216</subfield><subfield code="a">1162472083</subfield><subfield code="a">1227645683</subfield><subfield code="a">1228574117</subfield><subfield code="a">1241777263</subfield><subfield code="a">1259138981</subfield><subfield code="a">1290089171</subfield><subfield code="a">1300511602</subfield><subfield code="a">1303359245</subfield><subfield code="a">1303505038</subfield><subfield code="a">1306565914</subfield><subfield code="a">1398135939</subfield><subfield code="a">1409719357</subfield><subfield code="a">1424689518</subfield><subfield code="a">1450138991</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777621</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812777628</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789810249281</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810249284</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810249284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)614463189</subfield><subfield code="z">(OCoLC)181652426</subfield><subfield code="z">(OCoLC)277199770</subfield><subfield code="z">(OCoLC)474661132</subfield><subfield code="z">(OCoLC)474788158</subfield><subfield code="z">(OCoLC)647683551</subfield><subfield code="z">(OCoLC)872009772</subfield><subfield code="z">(OCoLC)879074411</subfield><subfield code="z">(OCoLC)888834905</subfield><subfield code="z">(OCoLC)961534737</subfield><subfield code="z">(OCoLC)962606788</subfield><subfield code="z">(OCoLC)988452931</subfield><subfield code="z">(OCoLC)992102606</subfield><subfield code="z">(OCoLC)1037718707</subfield><subfield code="z">(OCoLC)1038566291</subfield><subfield code="z">(OCoLC)1045437464</subfield><subfield code="z">(OCoLC)1055363086</subfield><subfield code="z">(OCoLC)1058642967</subfield><subfield code="z">(OCoLC)1064880847</subfield><subfield code="z">(OCoLC)1081284206</subfield><subfield code="z">(OCoLC)1153546216</subfield><subfield code="z">(OCoLC)1162472083</subfield><subfield code="z">(OCoLC)1227645683</subfield><subfield code="z">(OCoLC)1228574117</subfield><subfield code="z">(OCoLC)1241777263</subfield><subfield code="z">(OCoLC)1259138981</subfield><subfield code="z">(OCoLC)1290089171</subfield><subfield code="z">(OCoLC)1300511602</subfield><subfield code="z">(OCoLC)1303359245</subfield><subfield code="z">(OCoLC)1303505038</subfield><subfield code="z">(OCoLC)1306565914</subfield><subfield code="z">(OCoLC)1398135939</subfield><subfield code="z">(OCoLC)1409719357</subfield><subfield code="z">(OCoLC)1424689518</subfield><subfield code="z">(OCoLC)1450138991</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA645</subfield><subfield code="b">.C24 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">063000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TBJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PDE</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PNRP</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TGB</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">624.1/71</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, C. W.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99055271</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exact analysis of bi-periodic structures /</subfield><subfield code="c">C.W. Cai, J.K. Liu, H.C. Chan.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Bi-periodic structures</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 269 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 263-264) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation Presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; CONTENTS; Chapter 1 U Transformation and Uncoupling of Governing Equations for Systems with Cyclic Bi-periodicity; 1.1 Dynamic Properties of Structures with Cyclic Periodicity; 1.1.1 Governing Equation; 1.1.2 U Matrix and Cyclic Matrix; 1.1.3 U Transformation and Uncoupling of Simultaneous Equations with Cyclic Periodicity; 1.1.4 Dynamic Properties of Cyclic Periodic Structures; 1.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts; 1.2.1 Double U Transformation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts1.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity; 1.3.1 Cyclic Bi-periodic Equation; 1.3.2 Uncoupling of Cyclic Bi-periodic Equations; 1.3.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity for Variables with Two Subscripts; Chapter 2 Bi-periodic Mass-Spring Systems; 2.1 Cyclic Bi-periodic Mass-Spring System; 2.1.1 Static Solution; 2.1.1a Example; 2.1.2 Natural Vibration; 2.1.2a Example; 2.1.3 Forced Vibration; 2.1.3a Example.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 Linear Bi-periodic Mass-Spring Systems2.2.1 Bi-periodic Mass-Spring System with Fixed Extreme Ends; 2.2.1a Natural Vibration Example; 2.2.1b Forced Vibration Example; 2.2.2 Bi-periodic Mass-Spring System with Free Extreme Ends; 2.2.2a Natural Vibration Example; 2.2.2b Forced Vibration Example; 2.2.3 Bi-periodic Mass-Spring System with One End Fixed And The Other Free; 2.2.3a Natural Vibration Example; Chapter 3 Bi-periodic Structures; 3.1 Continuous Trusses with Equidistant Supports; 3.1.1 Governing Equation; 3.1.2 Static Solution [11]; 3.1.2a Example; 3.1.3 Natural Vibration [12].</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.3a Example3.1.4 Forced Vibration[12]; 3.1.4a Example; 3.2 Continuous Beam with Equidistant Roller and Spring Supports [10]; 3.2.1 Governing Equation and Static Solution; 3.2.2 Example; Chapter 4 Structures with Bi-periodicity in Two Directions; 4.1 Cable Networks with Periodic Supports; 4.1.1 Static Solution; 4.1.1a Example; 4.1.2 Natural Vibration[19]; 4.1.2a Example; 4.1.3 Forced Vibration [19]; 4.1.3a Example; 4.2 Grillwork with Periodic Supports[18]; 4.2.1 Governing Equation; 4.2.2 Static Solution; 4.2.3 Example; 4.3 Grillwork with Periodic Stiffened Beams; 4.3.1 Governing Equation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.2 Static Solution4.3.3 Example; Chapter 5 Nearly Periodic Systems with Nonlinear Disorders; 5.1 Periodic System with Nonlinear Disorders -- Mono-coupled System [21]; 5.1.1 Governing Equation; 5.1.2 Localized Modes in the System with One Nonlinear Disorder; 5.1.3 Localized Modes in the System with Two Nonlinear Disorders; 5.2 Periodic System with One Nonlinear Disorder -Two-degree-coupling System[22]; 5.2.1 Governing Equation; 5.2.2 Perturbation Solution; 5.2.3 Localized Modes; 5.3 Damped Periodic Systems with One Nonlinear Disorder[23]; 5.3.1 Forced Vibration Equation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85129216</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics, Analytic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082768</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Transformation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85136917</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des constructions.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique analytique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de transformations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">structural analysis.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Structural.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanics, Analytic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, J. K.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002066000</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, H. C.</subfield><subfield code="q">(Hon Chuen)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjqv9M7C63qxq8G3YcDYvb</subfield><subfield code="0">http://id.loc.gov/authorities/names/no99055254</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Exact analysis of bi-periodic structures (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGbCtxjxrjhHCbVbJJFTxP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Cai, C.W.</subfield><subfield code="t">Exact analysis of bi-periodic structures.</subfield><subfield code="d">New Jersey : World Scientific, ©2002</subfield><subfield code="z">9810249284</subfield><subfield code="z">9789810249281</subfield><subfield code="w">(DLC) 2002282961</subfield><subfield code="w">(OCoLC)50725701</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210665</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684744</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1681563</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10201227</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210665</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26007497</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736157</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">exactanalysisofb0000caic</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn614463189 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:11Z |
institution | BVB |
isbn | 9789812777621 9812777628 9789810249281 9810249284 |
language | English |
oclc_num | 614463189 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 269 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
spelling | Cai, C. W. http://id.loc.gov/authorities/names/no99055271 Exact analysis of bi-periodic structures / C.W. Cai, J.K. Liu, H.C. Chan. Bi-periodic structures New Jersey : World Scientific, ©2002. 1 online resource (ix, 269 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 263-264) and index. Print version record. Annotation Presents a procedure for applying the U-transformation technique twice to uncouple the two sets of unknown variables in a doubly periodic structure to achieve an analytical exact solution. Preface; CONTENTS; Chapter 1 U Transformation and Uncoupling of Governing Equations for Systems with Cyclic Bi-periodicity; 1.1 Dynamic Properties of Structures with Cyclic Periodicity; 1.1.1 Governing Equation; 1.1.2 U Matrix and Cyclic Matrix; 1.1.3 U Transformation and Uncoupling of Simultaneous Equations with Cyclic Periodicity; 1.1.4 Dynamic Properties of Cyclic Periodic Structures; 1.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts; 1.2.1 Double U Transformation. 1.2.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts1.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity; 1.3.1 Cyclic Bi-periodic Equation; 1.3.2 Uncoupling of Cyclic Bi-periodic Equations; 1.3.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity for Variables with Two Subscripts; Chapter 2 Bi-periodic Mass-Spring Systems; 2.1 Cyclic Bi-periodic Mass-Spring System; 2.1.1 Static Solution; 2.1.1a Example; 2.1.2 Natural Vibration; 2.1.2a Example; 2.1.3 Forced Vibration; 2.1.3a Example. 2.2 Linear Bi-periodic Mass-Spring Systems2.2.1 Bi-periodic Mass-Spring System with Fixed Extreme Ends; 2.2.1a Natural Vibration Example; 2.2.1b Forced Vibration Example; 2.2.2 Bi-periodic Mass-Spring System with Free Extreme Ends; 2.2.2a Natural Vibration Example; 2.2.2b Forced Vibration Example; 2.2.3 Bi-periodic Mass-Spring System with One End Fixed And The Other Free; 2.2.3a Natural Vibration Example; Chapter 3 Bi-periodic Structures; 3.1 Continuous Trusses with Equidistant Supports; 3.1.1 Governing Equation; 3.1.2 Static Solution [11]; 3.1.2a Example; 3.1.3 Natural Vibration [12]. 3.1.3a Example3.1.4 Forced Vibration[12]; 3.1.4a Example; 3.2 Continuous Beam with Equidistant Roller and Spring Supports [10]; 3.2.1 Governing Equation and Static Solution; 3.2.2 Example; Chapter 4 Structures with Bi-periodicity in Two Directions; 4.1 Cable Networks with Periodic Supports; 4.1.1 Static Solution; 4.1.1a Example; 4.1.2 Natural Vibration[19]; 4.1.2a Example; 4.1.3 Forced Vibration [19]; 4.1.3a Example; 4.2 Grillwork with Periodic Supports[18]; 4.2.1 Governing Equation; 4.2.2 Static Solution; 4.2.3 Example; 4.3 Grillwork with Periodic Stiffened Beams; 4.3.1 Governing Equation. 4.3.2 Static Solution4.3.3 Example; Chapter 5 Nearly Periodic Systems with Nonlinear Disorders; 5.1 Periodic System with Nonlinear Disorders -- Mono-coupled System [21]; 5.1.1 Governing Equation; 5.1.2 Localized Modes in the System with One Nonlinear Disorder; 5.1.3 Localized Modes in the System with Two Nonlinear Disorders; 5.2 Periodic System with One Nonlinear Disorder -Two-degree-coupling System[22]; 5.2.1 Governing Equation; 5.2.2 Perturbation Solution; 5.2.3 Localized Modes; 5.3 Damped Periodic Systems with One Nonlinear Disorder[23]; 5.3.1 Forced Vibration Equation. English. Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Théorie des constructions. Mécanique analytique. Groupes de transformations. structural analysis. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Mechanics, Analytic fast Structural analysis (Engineering) fast Transformation groups fast Liu, J. K. http://id.loc.gov/authorities/names/no2002066000 Chan, H. C. (Hon Chuen) https://id.oclc.org/worldcat/entity/E39PCjqv9M7C63qxq8G3YcDYvb http://id.loc.gov/authorities/names/no99055254 has work: Exact analysis of bi-periodic structures (Text) https://id.oclc.org/worldcat/entity/E39PCGbCtxjxrjhHCbVbJJFTxP https://id.oclc.org/worldcat/ontology/hasWork Print version: Cai, C.W. Exact analysis of bi-periodic structures. New Jersey : World Scientific, ©2002 9810249284 9789810249281 (DLC) 2002282961 (OCoLC)50725701 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210665 Volltext |
spellingShingle | Cai, C. W. Exact analysis of bi-periodic structures / Preface; CONTENTS; Chapter 1 U Transformation and Uncoupling of Governing Equations for Systems with Cyclic Bi-periodicity; 1.1 Dynamic Properties of Structures with Cyclic Periodicity; 1.1.1 Governing Equation; 1.1.2 U Matrix and Cyclic Matrix; 1.1.3 U Transformation and Uncoupling of Simultaneous Equations with Cyclic Periodicity; 1.1.4 Dynamic Properties of Cyclic Periodic Structures; 1.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts; 1.2.1 Double U Transformation. 1.2.2 Uncoupling of Simultaneous Equations with Cyclic Periodicity for Variables with Two Subscripts1.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity; 1.3.1 Cyclic Bi-periodic Equation; 1.3.2 Uncoupling of Cyclic Bi-periodic Equations; 1.3.3 Uncoupling of Simultaneous Equations with Cyclic Bi-periodicity for Variables with Two Subscripts; Chapter 2 Bi-periodic Mass-Spring Systems; 2.1 Cyclic Bi-periodic Mass-Spring System; 2.1.1 Static Solution; 2.1.1a Example; 2.1.2 Natural Vibration; 2.1.2a Example; 2.1.3 Forced Vibration; 2.1.3a Example. 2.2 Linear Bi-periodic Mass-Spring Systems2.2.1 Bi-periodic Mass-Spring System with Fixed Extreme Ends; 2.2.1a Natural Vibration Example; 2.2.1b Forced Vibration Example; 2.2.2 Bi-periodic Mass-Spring System with Free Extreme Ends; 2.2.2a Natural Vibration Example; 2.2.2b Forced Vibration Example; 2.2.3 Bi-periodic Mass-Spring System with One End Fixed And The Other Free; 2.2.3a Natural Vibration Example; Chapter 3 Bi-periodic Structures; 3.1 Continuous Trusses with Equidistant Supports; 3.1.1 Governing Equation; 3.1.2 Static Solution [11]; 3.1.2a Example; 3.1.3 Natural Vibration [12]. 3.1.3a Example3.1.4 Forced Vibration[12]; 3.1.4a Example; 3.2 Continuous Beam with Equidistant Roller and Spring Supports [10]; 3.2.1 Governing Equation and Static Solution; 3.2.2 Example; Chapter 4 Structures with Bi-periodicity in Two Directions; 4.1 Cable Networks with Periodic Supports; 4.1.1 Static Solution; 4.1.1a Example; 4.1.2 Natural Vibration[19]; 4.1.2a Example; 4.1.3 Forced Vibration [19]; 4.1.3a Example; 4.2 Grillwork with Periodic Supports[18]; 4.2.1 Governing Equation; 4.2.2 Static Solution; 4.2.3 Example; 4.3 Grillwork with Periodic Stiffened Beams; 4.3.1 Governing Equation. 4.3.2 Static Solution4.3.3 Example; Chapter 5 Nearly Periodic Systems with Nonlinear Disorders; 5.1 Periodic System with Nonlinear Disorders -- Mono-coupled System [21]; 5.1.1 Governing Equation; 5.1.2 Localized Modes in the System with One Nonlinear Disorder; 5.1.3 Localized Modes in the System with Two Nonlinear Disorders; 5.2 Periodic System with One Nonlinear Disorder -Two-degree-coupling System[22]; 5.2.1 Governing Equation; 5.2.2 Perturbation Solution; 5.2.3 Localized Modes; 5.3 Damped Periodic Systems with One Nonlinear Disorder[23]; 5.3.1 Forced Vibration Equation. Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Théorie des constructions. Mécanique analytique. Groupes de transformations. structural analysis. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Mechanics, Analytic fast Structural analysis (Engineering) fast Transformation groups fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85129216 http://id.loc.gov/authorities/subjects/sh85082768 http://id.loc.gov/authorities/subjects/sh85136917 |
title | Exact analysis of bi-periodic structures / |
title_alt | Bi-periodic structures |
title_auth | Exact analysis of bi-periodic structures / |
title_exact_search | Exact analysis of bi-periodic structures / |
title_full | Exact analysis of bi-periodic structures / C.W. Cai, J.K. Liu, H.C. Chan. |
title_fullStr | Exact analysis of bi-periodic structures / C.W. Cai, J.K. Liu, H.C. Chan. |
title_full_unstemmed | Exact analysis of bi-periodic structures / C.W. Cai, J.K. Liu, H.C. Chan. |
title_short | Exact analysis of bi-periodic structures / |
title_sort | exact analysis of bi periodic structures |
topic | Structural analysis (Engineering) http://id.loc.gov/authorities/subjects/sh85129216 Mechanics, Analytic. http://id.loc.gov/authorities/subjects/sh85082768 Transformation groups. http://id.loc.gov/authorities/subjects/sh85136917 Théorie des constructions. Mécanique analytique. Groupes de transformations. structural analysis. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Mechanics, Analytic fast Structural analysis (Engineering) fast Transformation groups fast |
topic_facet | Structural analysis (Engineering) Mechanics, Analytic. Transformation groups. Théorie des constructions. Mécanique analytique. Groupes de transformations. structural analysis. TECHNOLOGY & ENGINEERING Structural. Mechanics, Analytic Transformation groups |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210665 |
work_keys_str_mv | AT caicw exactanalysisofbiperiodicstructures AT liujk exactanalysisofbiperiodicstructures AT chanhc exactanalysisofbiperiodicstructures AT caicw biperiodicstructures AT liujk biperiodicstructures AT chanhc biperiodicstructures |