Dual sets of envelopes and characteristic regions of quasi-polynomials /:
Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves asso...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific,
©2009.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations. |
Beschreibung: | 1 online resource (viii, 227 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 225-226) and index. |
ISBN: | 9789814277280 9814277282 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn613343373 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr buu|||uu||| | ||
008 | 100511s2009 si a ob 001 0 eng d | ||
040 | |a LLB |b eng |e pn |c LLB |d N$T |d EBLCP |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d MERUC |d U3W |d VTS |d ICG |d INT |d OCLCQ |d DKC |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 608678833 |a 609971667 | ||
020 | |a 9789814277280 |q (electronic bk.) | ||
020 | |a 9814277282 |q (electronic bk.) | ||
020 | |z 9814277274 | ||
020 | |z 9789814277273 | ||
035 | |a (OCoLC)613343373 |z (OCoLC)608678833 |z (OCoLC)609971667 | ||
050 | 4 | |a QA351 |b .C44 2009eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.5 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Cheng, S. S. |q (Sui Sun) |1 https://id.oclc.org/worldcat/entity/E39PCjBmqcdFKPpGTTmP3rMGh3 |0 http://id.loc.gov/authorities/names/no00020645 | |
245 | 1 | 0 | |a Dual sets of envelopes and characteristic regions of quasi-polynomials / |c Sui Sun Cheng, Yi-Zhong Lin. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific, |c ©2009. | ||
300 | |a 1 online resource (viii, 227 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 225-226) and index. | ||
505 | 0 | |a 1. Prologue. 1.1. An example. 1.2. Basic definitions -- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes -- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes -- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes -- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes -- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes -- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes. | |
520 | |a Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Functions, Special. |0 http://id.loc.gov/authorities/subjects/sh85052348 | |
650 | 0 | |a Polynomials. |0 http://id.loc.gov/authorities/subjects/sh85104702 | |
650 | 6 | |a Fonctions spéciales. | |
650 | 6 | |a Polynômes. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Functions, Special |2 fast | |
650 | 7 | |a Polynomials |2 fast | |
700 | 1 | |a Lin, Yi-Zhong, |d 1936- |1 https://id.oclc.org/worldcat/entity/E39PCjwckpqPDWQHRjPQJRhdkP |0 http://id.loc.gov/authorities/names/no2009177222 | |
710 | 2 | |a World Scientific (Firm) |0 http://id.loc.gov/authorities/names/no2001005546 | |
776 | 1 | |z 9814277274 | |
776 | 1 | |z 9789814277273 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305323 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL477125 | ||
938 | |a EBSCOhost |b EBSC |n 305323 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn613343373 |
---|---|
_version_ | 1816881719077240833 |
adam_text | |
any_adam_object | |
author | Cheng, S. S. (Sui Sun) |
author2 | Lin, Yi-Zhong, 1936- |
author2_role | |
author2_variant | y z l yzl |
author_GND | http://id.loc.gov/authorities/names/no00020645 http://id.loc.gov/authorities/names/no2009177222 |
author_corporate | World Scientific (Firm) |
author_corporate_role | |
author_facet | Cheng, S. S. (Sui Sun) Lin, Yi-Zhong, 1936- World Scientific (Firm) |
author_role | |
author_sort | Cheng, S. S. |
author_variant | s s c ss ssc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA351 |
callnumber-raw | QA351 .C44 2009eb |
callnumber-search | QA351 .C44 2009eb |
callnumber-sort | QA 3351 C44 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Prologue. 1.1. An example. 1.2. Basic definitions -- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes -- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes -- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes -- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes -- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes -- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes. |
ctrlnum | (OCoLC)613343373 |
dewey-full | 515.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.5 |
dewey-search | 515.5 |
dewey-sort | 3515.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04667cam a2200565 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn613343373</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr buu|||uu|||</controlfield><controlfield tag="008">100511s2009 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LLB</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LLB</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">U3W</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">608678833</subfield><subfield code="a">609971667</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814277280</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814277282</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814277274</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814277273</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)613343373</subfield><subfield code="z">(OCoLC)608678833</subfield><subfield code="z">(OCoLC)609971667</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA351</subfield><subfield code="b">.C44 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, S. S.</subfield><subfield code="q">(Sui Sun)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBmqcdFKPpGTTmP3rMGh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/no00020645</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dual sets of envelopes and characteristic regions of quasi-polynomials /</subfield><subfield code="c">Sui Sun Cheng, Yi-Zhong Lin.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 227 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 225-226) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Prologue. 1.1. An example. 1.2. Basic definitions -- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes -- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes -- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes -- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes -- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes -- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions, Special.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052348</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104702</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions spéciales.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Special</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yi-Zhong,</subfield><subfield code="d">1936-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwckpqPDWQHRjPQJRhdkP</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009177222</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001005546</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9814277274</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9789814277273</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305323</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL477125</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">305323</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn613343373 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:11Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/no2001005546 |
isbn | 9789814277280 9814277282 |
language | English |
oclc_num | 613343373 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 227 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific, |
record_format | marc |
spelling | Cheng, S. S. (Sui Sun) https://id.oclc.org/worldcat/entity/E39PCjBmqcdFKPpGTTmP3rMGh3 http://id.loc.gov/authorities/names/no00020645 Dual sets of envelopes and characteristic regions of quasi-polynomials / Sui Sun Cheng, Yi-Zhong Lin. Singapore ; Hackensack, N.J. : World Scientific, ©2009. 1 online resource (viii, 227 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 225-226) and index. 1. Prologue. 1.1. An example. 1.2. Basic definitions -- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes -- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes -- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes -- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes -- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes -- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes. Existence and nonexistence of roots of functions involving one or more parameters has been the subject of numerous investigations. For a wide class of functions called quasi-polynomials, the above problems can be transformed into the existence and nonexistence of tangents of the envelope curves associated with the functions under investigation. In this book, we present a formal theory of the Cheng-Lin envelope method, which is completely new, yet simple and precise. This method is both simple - since only basic Calculus concepts are needed for understanding - and precise, since necessary and sufficient conditions can be obtained for functions such as polynomials containing more than four parameters. Since the underlying principles are relatively simple, this book is useful to college students who want to see immediate applications of what they learn in Calculus; to graduate students who want to do research in functional equations; and to researchers who want references on roots of quasi-polynomials encountered in the theory of difference and differential equations. Print version record. Functions, Special. http://id.loc.gov/authorities/subjects/sh85052348 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Fonctions spéciales. Polynômes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Special fast Polynomials fast Lin, Yi-Zhong, 1936- https://id.oclc.org/worldcat/entity/E39PCjwckpqPDWQHRjPQJRhdkP http://id.loc.gov/authorities/names/no2009177222 World Scientific (Firm) http://id.loc.gov/authorities/names/no2001005546 9814277274 9789814277273 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305323 Volltext |
spellingShingle | Cheng, S. S. (Sui Sun) Dual sets of envelopes and characteristic regions of quasi-polynomials / 1. Prologue. 1.1. An example. 1.2. Basic definitions -- 2. Envelopes and dual sets. 2.1. Plane curves. 2.2. Envelopes. 2.3. Dual sets of plane curves. 2.4. Notes -- 3. Dual sets of convex-concave functions. 3.1. Quasi-tangent lines. 3.2. Asymptotes. 3.3. Intersections of quasi-tangent lines and vertical lines. 3.4. Distribution maps for dual points. 3.5. Intersections of dual sets of order 0. 3.6. Notes -- 4. Quasi-polynomials. 4.1. [symbol]- and [symbol]-polynomials. 4.2. Characteristic regions. 4.3. Notes -- 5. C\(0, [symbol])-characteristic regions of real polynomials. 5.1. Quadratic polynomials. 5.2. Cubic polynomials. 5.3. Quartic polynomials. 5.4. Quintic polynomials. 5.5. Notes -- 6. C\(0, [symbol])-characteristic regions of real [symbol]-polynomials. 6.1. [symbol]-polynomials involving one power. 6.2. [symbol]-polynomials involving two powers. 6.3. [symbol]-polynomials involving three powers. 6.4. Notes -- 7. C\R-characteristic regions of [symbol]-polynomials. 7.1. [symbol]-polynomials involving one power. 7.2. [symbol]-polynomials involving two powers. 7.3. [symbol]-polynomials involving three powers. 7.4. Notes. Functions, Special. http://id.loc.gov/authorities/subjects/sh85052348 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Fonctions spéciales. Polynômes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Special fast Polynomials fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052348 http://id.loc.gov/authorities/subjects/sh85104702 |
title | Dual sets of envelopes and characteristic regions of quasi-polynomials / |
title_auth | Dual sets of envelopes and characteristic regions of quasi-polynomials / |
title_exact_search | Dual sets of envelopes and characteristic regions of quasi-polynomials / |
title_full | Dual sets of envelopes and characteristic regions of quasi-polynomials / Sui Sun Cheng, Yi-Zhong Lin. |
title_fullStr | Dual sets of envelopes and characteristic regions of quasi-polynomials / Sui Sun Cheng, Yi-Zhong Lin. |
title_full_unstemmed | Dual sets of envelopes and characteristic regions of quasi-polynomials / Sui Sun Cheng, Yi-Zhong Lin. |
title_short | Dual sets of envelopes and characteristic regions of quasi-polynomials / |
title_sort | dual sets of envelopes and characteristic regions of quasi polynomials |
topic | Functions, Special. http://id.loc.gov/authorities/subjects/sh85052348 Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Fonctions spéciales. Polynômes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Special fast Polynomials fast |
topic_facet | Functions, Special. Polynomials. Fonctions spéciales. Polynômes. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Functions, Special Polynomials |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305323 |
work_keys_str_mv | AT chengss dualsetsofenvelopesandcharacteristicregionsofquasipolynomials AT linyizhong dualsetsofenvelopesandcharacteristicregionsofquasipolynomials AT worldscientificfirm dualsetsofenvelopesandcharacteristicregionsofquasipolynomials |