How mathematicians think :: using ambiguity, contradiction, and paradox to create mathematics /
"To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically - even algorithmically - from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
©2007.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically - even algorithmically - from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results."--Jacket |
Beschreibung: | 1 online resource (vii, 415 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 399-405) and index. |
ISBN: | 9781400833955 1400833957 9786612531453 6612531452 128253145X 9781282531451 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn609896892 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100428s2007 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d OCLCQ |d REDDC |d OCLCQ |d JSTOR |d OCLCF |d DKDLA |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d PIFAG |d OTZ |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d NRAMU |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d LVT |d YOU |d OCLCQ |d M8D |d HS0 |d UWK |d INARC |d UKCRE |d OCLCQ |d BOL |d MM9 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ | ||
015 | |a GBA736823 |2 bnb | ||
016 | 7 | |a 013745985 |2 Uk | |
019 | |a 647903169 |a 961643011 |a 962674102 |a 988435800 |a 992026569 |a 994983589 |a 1037901732 |a 1038675380 |a 1045567748 |a 1055374063 |a 1062900507 |a 1062992863 |a 1108994299 |a 1110409156 |a 1114420982 |a 1149495360 |a 1153464530 |a 1162382141 |a 1181910684 |a 1228548342 | ||
020 | |a 9781400833955 |q (electronic bk.) | ||
020 | |a 1400833957 |q (electronic bk.) | ||
020 | |a 9786612531453 | ||
020 | |a 6612531452 | ||
020 | |a 128253145X | ||
020 | |a 9781282531451 | ||
020 | |z 9780691145990 | ||
020 | |z 9780691127385 |q (acid-free paper) | ||
020 | |z 0691127387 |q (acid-free paper) | ||
035 | |a (OCoLC)609896892 |z (OCoLC)647903169 |z (OCoLC)961643011 |z (OCoLC)962674102 |z (OCoLC)988435800 |z (OCoLC)992026569 |z (OCoLC)994983589 |z (OCoLC)1037901732 |z (OCoLC)1038675380 |z (OCoLC)1045567748 |z (OCoLC)1055374063 |z (OCoLC)1062900507 |z (OCoLC)1062992863 |z (OCoLC)1108994299 |z (OCoLC)1110409156 |z (OCoLC)1114420982 |z (OCoLC)1149495360 |z (OCoLC)1153464530 |z (OCoLC)1162382141 |z (OCoLC)1181910684 |z (OCoLC)1228548342 | ||
037 | |a 22573/cttz10z |b JSTOR | ||
050 | 4 | |a BF456.N7 |b B94 2007eb | |
055 | 1 | 2 | |a BF456* |
055 | 1 | 0 | |a BF456 N7 |b B84 2007 |
072 | 7 | |a MAT |x 015000 |2 bisacsh | |
072 | 7 | |a MAT015000 |2 bisacsh | |
082 | 7 | |a 510.92 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Byers, William, |d 1943- | |
245 | 1 | 0 | |a How mathematicians think : |b using ambiguity, contradiction, and paradox to create mathematics / |c William Byers. |
260 | |a Princeton : |b Princeton University Press, |c ©2007. | ||
300 | |a 1 online resource (vii, 415 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
340 | |g polychrome. |2 rdacc |0 http://rdaregistry.info/termList/RDAColourContent/1003 | ||
347 | |a text file |2 rdaft |0 http://rdaregistry.info/termList/fileType/1002 | ||
504 | |a Includes bibliographical references (pages 399-405) and index. | ||
520 | 1 | |a "To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically - even algorithmically - from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results."--Jacket | |
588 | 0 | |a Print version record. | |
505 | 0 | 0 | |t Acknowledgments -- |t Introduction : Turning on the light -- |t Section 1 : The light of ambiguity |g ch. 1 -- |t Ambiguity in mathematics |g ch. 2 -- |t The contradictory in mathematics |g ch. 3 -- |t Paradoxes and mathematics : infinity and the real numbers |g ch. 4 -- |t More paradoxes of infinity : geometry, cardinality, and beyond -- |t Section 2 : The light as idea |g ch. 5. The -- |t idea as an organizing principle |g ch. 6 -- |t Ideas, logic, and paradox |g ch. 7 -- |t Great ideas -- |t Section 3 : The light and the eye of the beholder |g ch. 8. The -- |t truth of mathematics |g ch. 9 -- |t Conclusion : is mathematics algorithmic or creative? -- |t Notes -- |t Bibliography -- |t Index. |
546 | |a English. | ||
650 | 0 | |a Mathematicians |x Psychology. | |
650 | 0 | |a Mathematics |x Psychological aspects. | |
650 | 0 | |a Mathematics |x Philosophy. |0 http://id.loc.gov/authorities/subjects/sh85082153 | |
650 | 6 | |a Mathématiciens |x Psychologie. | |
650 | 6 | |a Cognition numérique. | |
650 | 6 | |a Mathématiques |x Philosophie. | |
650 | 6 | |a Mathématiques |x Aspect psychologique. | |
650 | 7 | |a MATHEMATICS |x History & Philosophy. |2 bisacsh | |
650 | 7 | |a Mathematicians |x Psychology |2 fast | |
650 | 7 | |a Mathematics |x Philosophy |2 fast | |
650 | 7 | |a Mathematics |x Psychological aspects |2 fast | |
776 | 0 | 8 | |i Print version: |a Byers, William, 1943- |t How mathematicians think. |d Princeton : Princeton University Press, ©2007 |z 9780691145990 |w (DLC) 2006033160 |w (OCoLC)73502041 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=313432 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10376732 | ||
938 | |a EBSCOhost |b EBSC |n 313432 | ||
938 | |a Internet Archive |b INAR |n howmathematician00byer | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn609896892 |
---|---|
_version_ | 1816881718351626240 |
adam_text | |
any_adam_object | |
author | Byers, William, 1943- |
author_facet | Byers, William, 1943- |
author_role | |
author_sort | Byers, William, 1943- |
author_variant | w b wb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | B - Philosophy, Psychology, Religion |
callnumber-label | BF456 |
callnumber-raw | BF456.N7 B94 2007eb |
callnumber-search | BF456.N7 B94 2007eb |
callnumber-sort | BF 3456 N7 B94 42007EB |
callnumber-subject | BF - Psychology |
collection | ZDB-4-EBA |
contents | Acknowledgments -- Introduction : Turning on the light -- Section 1 : The light of ambiguity Ambiguity in mathematics The contradictory in mathematics Paradoxes and mathematics : infinity and the real numbers More paradoxes of infinity : geometry, cardinality, and beyond -- Section 2 : The light as idea idea as an organizing principle Ideas, logic, and paradox Great ideas -- Section 3 : The light and the eye of the beholder truth of mathematics Conclusion : is mathematics algorithmic or creative? -- Notes -- Bibliography -- Index. |
ctrlnum | (OCoLC)609896892 |
dewey-full | 510.92 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.92 |
dewey-search | 510.92 |
dewey-sort | 3510.92 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04837cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn609896892</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">100428s2007 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">LVT</subfield><subfield code="d">YOU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">HS0</subfield><subfield code="d">UWK</subfield><subfield code="d">INARC</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BOL</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA736823</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013745985</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">647903169</subfield><subfield code="a">961643011</subfield><subfield code="a">962674102</subfield><subfield code="a">988435800</subfield><subfield code="a">992026569</subfield><subfield code="a">994983589</subfield><subfield code="a">1037901732</subfield><subfield code="a">1038675380</subfield><subfield code="a">1045567748</subfield><subfield code="a">1055374063</subfield><subfield code="a">1062900507</subfield><subfield code="a">1062992863</subfield><subfield code="a">1108994299</subfield><subfield code="a">1110409156</subfield><subfield code="a">1114420982</subfield><subfield code="a">1149495360</subfield><subfield code="a">1153464530</subfield><subfield code="a">1162382141</subfield><subfield code="a">1181910684</subfield><subfield code="a">1228548342</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400833955</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400833957</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612531453</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612531452</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128253145X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282531451</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691145990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691127385</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691127387</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)609896892</subfield><subfield code="z">(OCoLC)647903169</subfield><subfield code="z">(OCoLC)961643011</subfield><subfield code="z">(OCoLC)962674102</subfield><subfield code="z">(OCoLC)988435800</subfield><subfield code="z">(OCoLC)992026569</subfield><subfield code="z">(OCoLC)994983589</subfield><subfield code="z">(OCoLC)1037901732</subfield><subfield code="z">(OCoLC)1038675380</subfield><subfield code="z">(OCoLC)1045567748</subfield><subfield code="z">(OCoLC)1055374063</subfield><subfield code="z">(OCoLC)1062900507</subfield><subfield code="z">(OCoLC)1062992863</subfield><subfield code="z">(OCoLC)1108994299</subfield><subfield code="z">(OCoLC)1110409156</subfield><subfield code="z">(OCoLC)1114420982</subfield><subfield code="z">(OCoLC)1149495360</subfield><subfield code="z">(OCoLC)1153464530</subfield><subfield code="z">(OCoLC)1162382141</subfield><subfield code="z">(OCoLC)1181910684</subfield><subfield code="z">(OCoLC)1228548342</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttz10z</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">BF456.N7</subfield><subfield code="b">B94 2007eb</subfield></datafield><datafield tag="055" ind1="1" ind2="2"><subfield code="a">BF456*</subfield></datafield><datafield tag="055" ind1="1" ind2="0"><subfield code="a">BF456 N7</subfield><subfield code="b">B84 2007</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT015000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510.92</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Byers, William,</subfield><subfield code="d">1943-</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How mathematicians think :</subfield><subfield code="b">using ambiguity, contradiction, and paradox to create mathematics /</subfield><subfield code="c">William Byers.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 415 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="340" ind1=" " ind2=" "><subfield code="g">polychrome.</subfield><subfield code="2">rdacc</subfield><subfield code="0">http://rdaregistry.info/termList/RDAColourContent/1003</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rdaft</subfield><subfield code="0">http://rdaregistry.info/termList/fileType/1002</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 399-405) and index.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically - even algorithmically - from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results."--Jacket</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Acknowledgments --</subfield><subfield code="t">Introduction : Turning on the light --</subfield><subfield code="t">Section 1 : The light of ambiguity</subfield><subfield code="g">ch. 1 --</subfield><subfield code="t">Ambiguity in mathematics</subfield><subfield code="g">ch. 2 --</subfield><subfield code="t">The contradictory in mathematics</subfield><subfield code="g">ch. 3 --</subfield><subfield code="t">Paradoxes and mathematics : infinity and the real numbers</subfield><subfield code="g">ch. 4 --</subfield><subfield code="t">More paradoxes of infinity : geometry, cardinality, and beyond --</subfield><subfield code="t">Section 2 : The light as idea</subfield><subfield code="g">ch. 5. The --</subfield><subfield code="t">idea as an organizing principle</subfield><subfield code="g">ch. 6 --</subfield><subfield code="t">Ideas, logic, and paradox</subfield><subfield code="g">ch. 7 --</subfield><subfield code="t">Great ideas --</subfield><subfield code="t">Section 3 : The light and the eye of the beholder</subfield><subfield code="g">ch. 8. The --</subfield><subfield code="t">truth of mathematics</subfield><subfield code="g">ch. 9 --</subfield><subfield code="t">Conclusion : is mathematics algorithmic or creative? --</subfield><subfield code="t">Notes --</subfield><subfield code="t">Bibliography --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematicians</subfield><subfield code="x">Psychology.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">Psychological aspects.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082153</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiciens</subfield><subfield code="x">Psychologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Cognition numérique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques</subfield><subfield code="x">Philosophie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mathématiques</subfield><subfield code="x">Aspect psychologique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">History & Philosophy.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematicians</subfield><subfield code="x">Psychology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="x">Psychological aspects</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Byers, William, 1943-</subfield><subfield code="t">How mathematicians think.</subfield><subfield code="d">Princeton : Princeton University Press, ©2007</subfield><subfield code="z">9780691145990</subfield><subfield code="w">(DLC) 2006033160</subfield><subfield code="w">(OCoLC)73502041</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=313432</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10376732</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">313432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">howmathematician00byer</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn609896892 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:10Z |
institution | BVB |
isbn | 9781400833955 1400833957 9786612531453 6612531452 128253145X 9781282531451 |
language | English |
oclc_num | 609896892 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 415 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press, |
record_format | marc |
spelling | Byers, William, 1943- How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / William Byers. Princeton : Princeton University Press, ©2007. 1 online resource (vii, 415 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier polychrome. rdacc http://rdaregistry.info/termList/RDAColourContent/1003 text file rdaft http://rdaregistry.info/termList/fileType/1002 Includes bibliographical references (pages 399-405) and index. "To many outsiders, mathematicians appear to think like computers, grimly grinding away with a strict formal logic and moving methodically - even algorithmically - from one black-and-white deduction to another. Yet mathematicians often describe their most important breakthroughs as creative, intuitive responses to ambiguity, contradiction, and paradox. A unique examination of this less-familiar aspect of mathematics, How Mathematicians Think reveals that mathematics is a profoundly creative activity and not just a body of formalized rules and results."--Jacket Print version record. Acknowledgments -- Introduction : Turning on the light -- Section 1 : The light of ambiguity ch. 1 -- Ambiguity in mathematics ch. 2 -- The contradictory in mathematics ch. 3 -- Paradoxes and mathematics : infinity and the real numbers ch. 4 -- More paradoxes of infinity : geometry, cardinality, and beyond -- Section 2 : The light as idea ch. 5. The -- idea as an organizing principle ch. 6 -- Ideas, logic, and paradox ch. 7 -- Great ideas -- Section 3 : The light and the eye of the beholder ch. 8. The -- truth of mathematics ch. 9 -- Conclusion : is mathematics algorithmic or creative? -- Notes -- Bibliography -- Index. English. Mathematicians Psychology. Mathematics Psychological aspects. Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiciens Psychologie. Cognition numérique. Mathématiques Philosophie. Mathématiques Aspect psychologique. MATHEMATICS History & Philosophy. bisacsh Mathematicians Psychology fast Mathematics Philosophy fast Mathematics Psychological aspects fast Print version: Byers, William, 1943- How mathematicians think. Princeton : Princeton University Press, ©2007 9780691145990 (DLC) 2006033160 (OCoLC)73502041 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=313432 Volltext |
spellingShingle | Byers, William, 1943- How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / Acknowledgments -- Introduction : Turning on the light -- Section 1 : The light of ambiguity Ambiguity in mathematics The contradictory in mathematics Paradoxes and mathematics : infinity and the real numbers More paradoxes of infinity : geometry, cardinality, and beyond -- Section 2 : The light as idea idea as an organizing principle Ideas, logic, and paradox Great ideas -- Section 3 : The light and the eye of the beholder truth of mathematics Conclusion : is mathematics algorithmic or creative? -- Notes -- Bibliography -- Index. Mathematicians Psychology. Mathematics Psychological aspects. Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiciens Psychologie. Cognition numérique. Mathématiques Philosophie. Mathématiques Aspect psychologique. MATHEMATICS History & Philosophy. bisacsh Mathematicians Psychology fast Mathematics Philosophy fast Mathematics Psychological aspects fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082153 |
title | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / |
title_alt | Acknowledgments -- Introduction : Turning on the light -- Section 1 : The light of ambiguity Ambiguity in mathematics The contradictory in mathematics Paradoxes and mathematics : infinity and the real numbers More paradoxes of infinity : geometry, cardinality, and beyond -- Section 2 : The light as idea idea as an organizing principle Ideas, logic, and paradox Great ideas -- Section 3 : The light and the eye of the beholder truth of mathematics Conclusion : is mathematics algorithmic or creative? -- Notes -- Bibliography -- Index. |
title_auth | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / |
title_exact_search | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / |
title_full | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / William Byers. |
title_fullStr | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / William Byers. |
title_full_unstemmed | How mathematicians think : using ambiguity, contradiction, and paradox to create mathematics / William Byers. |
title_short | How mathematicians think : |
title_sort | how mathematicians think using ambiguity contradiction and paradox to create mathematics |
title_sub | using ambiguity, contradiction, and paradox to create mathematics / |
topic | Mathematicians Psychology. Mathematics Psychological aspects. Mathematics Philosophy. http://id.loc.gov/authorities/subjects/sh85082153 Mathématiciens Psychologie. Cognition numérique. Mathématiques Philosophie. Mathématiques Aspect psychologique. MATHEMATICS History & Philosophy. bisacsh Mathematicians Psychology fast Mathematics Philosophy fast Mathematics Psychological aspects fast |
topic_facet | Mathematicians Psychology. Mathematics Psychological aspects. Mathematics Philosophy. Mathématiciens Psychologie. Cognition numérique. Mathématiques Philosophie. Mathématiques Aspect psychologique. MATHEMATICS History & Philosophy. Mathematicians Psychology Mathematics Philosophy Mathematics Psychological aspects |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=313432 |
work_keys_str_mv | AT byerswilliam howmathematiciansthinkusingambiguitycontradictionandparadoxtocreatemathematics |