The hypoelliptic Laplacian and Ray-Singer metrics /:

This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bismut, Jean-Michel
Weitere Verfasser: Lebeau, Gilles
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton : Princeton University Press, 2008.
Schriftenreihe:Annals of mathematics studies ; no. 167.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th.
Beschreibung:1 online resource (viii, 367 pages :)
Bibliographie:Includes bibliographical references (pages 353-357) and indexes.
ISBN:9781400829064
1400829062
9786612458378
6612458372