The hypoelliptic Laplacian and Ray-Singer metrics /:
This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2008.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 167. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th. |
Beschreibung: | 1 online resource (viii, 367 pages :) |
Bibliographie: | Includes bibliographical references (pages 353-357) and indexes. |
ISBN: | 9781400829064 1400829062 9786612458378 6612458372 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn593214464 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100402s2008 njua ob 001 0 eng d | ||
010 | |a 2008062103 | ||
040 | |a N$T |b eng |e pn |c N$T |d OSU |d EBLCP |d OCLCE |d IDEBK |d E7B |d OCLCQ |d FVL |d OCLCQ |d DKDLA |d OCLCQ |d DEBSZ |d MHW |d JSTOR |d OCLCF |d P4I |d OCLCQ |d NLGGC |d OCLCQ |d YDXCP |d MERUC |d AU@ |d OCLCQ |d CHVBK |d COO |d DEBBG |d AZK |d AGLDB |d UIU |d JBG |d MOR |d OCLCO |d PIFAG |d ZCU |d OTZ |d WT2 |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d ICG |d INT |d REC |d NRAMU |d VT2 |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d OCLCO |d M8D |d OCLCO |d OCLCQ |d K6U |d OCLCQ |d UKAHL |d UKCRE |d VLB |d VLY |d MM9 |d AJS |d OCLCO |d OCLCQ |d OCLCO |d UIU |d AAA |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL |d NUI | ||
015 | |a GBA888256 |2 bnb | ||
016 | 7 | |z 014668598 |2 Uk | |
019 | |a 557464429 |a 609974518 |a 647843228 |a 655522032 |a 748593712 |a 767255104 |a 770848453 |a 827887307 |a 961493585 |a 962683703 |a 988480812 |a 992104676 |a 994901402 |a 1037937566 |a 1038696343 |a 1045536249 |a 1058056326 |a 1064063328 |a 1153547753 |a 1162230345 |a 1181903349 |a 1228558377 |a 1258396930 |a 1300787267 | ||
020 | |a 9781400829064 |q (electronic bk.) | ||
020 | |a 1400829062 |q (electronic bk.) | ||
020 | |z 9780691137315 |q (alk. paper) | ||
020 | |z 0691137315 |q (alk. paper) | ||
020 | |z 9780691137322 |q (pbk. ; |q alk. paper) | ||
020 | |z 0691137323 |q (pbk. ; |q alk. paper) | ||
020 | |a 9786612458378 | ||
020 | |a 6612458372 | ||
024 | 7 | |a 10.1515/9781400829064 |2 doi | |
035 | |a (OCoLC)593214464 |z (OCoLC)557464429 |z (OCoLC)609974518 |z (OCoLC)647843228 |z (OCoLC)655522032 |z (OCoLC)748593712 |z (OCoLC)767255104 |z (OCoLC)770848453 |z (OCoLC)827887307 |z (OCoLC)961493585 |z (OCoLC)962683703 |z (OCoLC)988480812 |z (OCoLC)992104676 |z (OCoLC)994901402 |z (OCoLC)1037937566 |z (OCoLC)1038696343 |z (OCoLC)1045536249 |z (OCoLC)1058056326 |z (OCoLC)1064063328 |z (OCoLC)1153547753 |z (OCoLC)1162230345 |z (OCoLC)1181903349 |z (OCoLC)1228558377 |z (OCoLC)1258396930 |z (OCoLC)1300787267 | ||
037 | |a 22573/cttthr0 |b JSTOR | ||
050 | 4 | |a QA377 |b .B674 2008eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
072 | 7 | |a MAT012000 |2 bisacsh | |
072 | 7 | |a MAT034000 |2 bisacsh | |
082 | 7 | |a 515/.7242 |2 22 | |
084 | |a SK 620 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Bismut, Jean-Michel. |0 http://id.loc.gov/authorities/names/n82207855 | |
245 | 1 | 4 | |a The hypoelliptic Laplacian and Ray-Singer metrics / |c Jean-Michel Bismut, Gilles Lebeau. |
260 | |a Princeton : |b Princeton University Press, |c 2008. | ||
300 | |a 1 online resource (viii, 367 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 167 | |
504 | |a Includes bibliographical references (pages 353-357) and indexes. | ||
588 | 0 | |a Print version record. | |
520 | |a This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th. | ||
505 | 0 | |a Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula. | |
505 | 8 | |a Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt. | |
546 | |a In English. | ||
650 | 0 | |a Differential equations, Hypoelliptic. |0 http://id.loc.gov/authorities/subjects/sh85037901 | |
650 | 0 | |a Laplacian operator. |0 http://id.loc.gov/authorities/subjects/sh85074667 | |
650 | 0 | |a Metric spaces. |0 http://id.loc.gov/authorities/subjects/sh85084441 | |
650 | 6 | |a Équations différentielles hypo-elliptiques. | |
650 | 6 | |a Laplacien. | |
650 | 6 | |a Espaces métriques. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Differential equations, Hypoelliptic |2 fast | |
650 | 7 | |a Laplacian operator |2 fast | |
650 | 7 | |a Metric spaces |2 fast | |
650 | 7 | |a Hodge-Theorie |2 gnd |0 http://d-nb.info/gnd/4135967-7 | |
650 | 7 | |a Hypoelliptischer Operator |2 gnd |0 http://d-nb.info/gnd/4138891-4 | |
650 | 7 | |a Laplace-Operator |2 gnd |0 http://d-nb.info/gnd/4166772-4 | |
650 | 1 | 7 | |a Elliptische differentiaalvergelijkingen. |2 gtt |
650 | 1 | 7 | |a Laplace-operatoren. |2 gtt |
650 | 1 | 7 | |a Metrische ruimten. |0 (NL-LeOCL)078589746 |2 gtt |
650 | 1 | 7 | |a Partiële differentiaalvergelijkingen. |2 gtt |
650 | 1 | 7 | |a Tweede orde. |0 (NL-LeOCL)078696275 |2 gtt |
653 | |a Alexander Grothendieck. | ||
653 | |a Analytic function. | ||
653 | |a Asymptote. | ||
653 | |a Asymptotic expansion. | ||
653 | |a Berezin integral. | ||
653 | |a Bijection. | ||
653 | |a Brownian dynamics. | ||
653 | |a Brownian motion. | ||
653 | |a Chaos theory. | ||
653 | |a Chern class. | ||
653 | |a Classical Wiener space. | ||
653 | |a Clifford algebra. | ||
653 | |a Cohomology. | ||
653 | |a Combination. | ||
653 | |a Commutator. | ||
653 | |a Computation. | ||
653 | |a Connection form. | ||
653 | |a Coordinate system. | ||
653 | |a Cotangent bundle. | ||
653 | |a Covariance matrix. | ||
653 | |a Curvature tensor. | ||
653 | |a Curvature. | ||
653 | |a De Rham cohomology. | ||
653 | |a Derivative. | ||
653 | |a Determinant. | ||
653 | |a Differentiable manifold. | ||
653 | |a Differential operator. | ||
653 | |a Dirac operator. | ||
653 | |a Direct proof. | ||
653 | |a Eigenform. | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Ellipse. | ||
653 | |a Embedding. | ||
653 | |a Equation. | ||
653 | |a Estimation. | ||
653 | |a Euclidean space. | ||
653 | |a Explicit formula. | ||
653 | |a Explicit formulae (L-function). | ||
653 | |a Feynman-Kac formula. | ||
653 | |a Fiber bundle. | ||
653 | |a Fokker-Planck equation. | ||
653 | |a Formal power series. | ||
653 | |a Fourier series. | ||
653 | |a Fourier transform. | ||
653 | |a Fredholm determinant. | ||
653 | |a Function space. | ||
653 | |a Girsanov theorem. | ||
653 | |a Ground state. | ||
653 | |a Heat kernel. | ||
653 | |a Hilbert space. | ||
653 | |a Hodge theory. | ||
653 | |a Holomorphic function. | ||
653 | |a Holomorphic vector bundle. | ||
653 | |a Hypoelliptic operator. | ||
653 | |a Integration by parts. | ||
653 | |a Invertible matrix. | ||
653 | |a Logarithm. | ||
653 | |a Malliavin calculus. | ||
653 | |a Martingale (probability theory). | ||
653 | |a Matrix calculus. | ||
653 | |a Mellin transform. | ||
653 | |a Morse theory. | ||
653 | |a Notation. | ||
653 | |a Parameter. | ||
653 | |a Parametrix. | ||
653 | |a Parity (mathematics). | ||
653 | |a Polynomial. | ||
653 | |a Principal bundle. | ||
653 | |a Probabilistic method. | ||
653 | |a Projection (linear algebra). | ||
653 | |a Rectangle. | ||
653 | |a Resolvent set. | ||
653 | |a Ricci curvature. | ||
653 | |a Riemann-Roch theorem. | ||
653 | |a Scientific notation. | ||
653 | |a Self-adjoint operator. | ||
653 | |a Self-adjoint. | ||
653 | |a Sign convention. | ||
653 | |a Smoothness. | ||
653 | |a Sobolev space. | ||
653 | |a Spectral theory. | ||
653 | |a Square root. | ||
653 | |a Stochastic calculus. | ||
653 | |a Stochastic process. | ||
653 | |a Summation. | ||
653 | |a Supertrace. | ||
653 | |a Symmetric space. | ||
653 | |a Tangent space. | ||
653 | |a Taylor series. | ||
653 | |a Theorem. | ||
653 | |a Theory. | ||
653 | |a Torus. | ||
653 | |a Trace class. | ||
653 | |a Translational symmetry. | ||
653 | |a Transversality (mathematics). | ||
653 | |a Uniform convergence. | ||
653 | |a Variable (mathematics). | ||
653 | |a Vector bundle. | ||
653 | |a Vector space. | ||
653 | |a Wave equation. | ||
700 | 1 | |a Lebeau, Gilles. |0 http://id.loc.gov/authorities/names/no95029279 | |
758 | |i has work: |a The hypoelliptic Laplacian and Ray-Singer metrics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4q3fCTBPGwKG3RKvvbkC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bismut, Jean-Michel. |t Hypoelliptic Laplacian and Ray-Singer metrics. |d Princeton : Princeton University Press, 2008 |z 9780691137322 |w (DLC) 2008062103 |w (OCoLC)213133468 |
830 | 0 | |a Annals of mathematics studies ; |v no. 167. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH28126689 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL483509 | ||
938 | |a ebrary |b EBRY |n ebr10359240 | ||
938 | |a EBSCOhost |b EBSC |n 305771 | ||
938 | |a YBP Library Services |b YANK |n 3157740 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn593214464 |
---|---|
_version_ | 1813903356682305536 |
adam_text | |
any_adam_object | |
author | Bismut, Jean-Michel |
author2 | Lebeau, Gilles |
author2_role | |
author2_variant | g l gl |
author_GND | http://id.loc.gov/authorities/names/n82207855 http://id.loc.gov/authorities/names/no95029279 |
author_facet | Bismut, Jean-Michel Lebeau, Gilles |
author_role | |
author_sort | Bismut, Jean-Michel |
author_variant | j m b jmb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .B674 2008eb |
callnumber-search | QA377 .B674 2008eb |
callnumber-sort | QA 3377 B674 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 |
collection | ZDB-4-EBA |
contents | Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula. Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt. |
ctrlnum | (OCoLC)593214464 |
dewey-full | 515/.7242 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.7242 |
dewey-search | 515/.7242 |
dewey-sort | 3515 47242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09919cam a2202113 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn593214464</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">100402s2008 njua ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2008062103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OSU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCE</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">MHW</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">P4I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CHVBK</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">JBG</subfield><subfield code="d">MOR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">WT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLB</subfield><subfield code="d">VLY</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UIU</subfield><subfield code="d">AAA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA888256</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">014668598</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">557464429</subfield><subfield code="a">609974518</subfield><subfield code="a">647843228</subfield><subfield code="a">655522032</subfield><subfield code="a">748593712</subfield><subfield code="a">767255104</subfield><subfield code="a">770848453</subfield><subfield code="a">827887307</subfield><subfield code="a">961493585</subfield><subfield code="a">962683703</subfield><subfield code="a">988480812</subfield><subfield code="a">992104676</subfield><subfield code="a">994901402</subfield><subfield code="a">1037937566</subfield><subfield code="a">1038696343</subfield><subfield code="a">1045536249</subfield><subfield code="a">1058056326</subfield><subfield code="a">1064063328</subfield><subfield code="a">1153547753</subfield><subfield code="a">1162230345</subfield><subfield code="a">1181903349</subfield><subfield code="a">1228558377</subfield><subfield code="a">1258396930</subfield><subfield code="a">1300787267</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400829064</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400829062</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691137315</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691137315</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691137322</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691137323</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612458378</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612458372</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400829064</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)593214464</subfield><subfield code="z">(OCoLC)557464429</subfield><subfield code="z">(OCoLC)609974518</subfield><subfield code="z">(OCoLC)647843228</subfield><subfield code="z">(OCoLC)655522032</subfield><subfield code="z">(OCoLC)748593712</subfield><subfield code="z">(OCoLC)767255104</subfield><subfield code="z">(OCoLC)770848453</subfield><subfield code="z">(OCoLC)827887307</subfield><subfield code="z">(OCoLC)961493585</subfield><subfield code="z">(OCoLC)962683703</subfield><subfield code="z">(OCoLC)988480812</subfield><subfield code="z">(OCoLC)992104676</subfield><subfield code="z">(OCoLC)994901402</subfield><subfield code="z">(OCoLC)1037937566</subfield><subfield code="z">(OCoLC)1038696343</subfield><subfield code="z">(OCoLC)1045536249</subfield><subfield code="z">(OCoLC)1058056326</subfield><subfield code="z">(OCoLC)1064063328</subfield><subfield code="z">(OCoLC)1153547753</subfield><subfield code="z">(OCoLC)1162230345</subfield><subfield code="z">(OCoLC)1181903349</subfield><subfield code="z">(OCoLC)1228558377</subfield><subfield code="z">(OCoLC)1258396930</subfield><subfield code="z">(OCoLC)1300787267</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttthr0</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.B674 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.7242</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bismut, Jean-Michel.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82207855</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The hypoelliptic Laplacian and Ray-Singer metrics /</subfield><subfield code="c">Jean-Michel Bismut, Gilles Lebeau.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 367 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 167</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 353-357) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Hypoelliptic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037901</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Laplacian operator.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85074667</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Metric spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85084441</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles hypo-elliptiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Laplacien.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces métriques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Hypoelliptic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplacian operator</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Metric spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4135967-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4138891-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4166772-4</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Elliptische differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Laplace-operatoren.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Metrische ruimten.</subfield><subfield code="0">(NL-LeOCL)078589746</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Tweede orde.</subfield><subfield code="0">(NL-LeOCL)078696275</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Alexander Grothendieck.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Asymptote.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Asymptotic expansion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Berezin integral.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bijection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brownian dynamics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brownian motion.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chaos theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chern class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Classical Wiener space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Clifford algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Combination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Commutator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Connection form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cotangent bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Covariance matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Curvature tensor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Curvature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">De Rham cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Derivative.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Determinant.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differentiable manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dirac operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Direct proof.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ellipse.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Embedding.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Estimation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Explicit formula.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Explicit formulae (L-function).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Feynman-Kac formula.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fiber bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fokker-Planck equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Formal power series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fredholm determinant.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Function space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Girsanov theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ground state.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Heat kernel.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hilbert space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hodge theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Holomorphic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Holomorphic vector bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hypoelliptic operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integration by parts.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Invertible matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Logarithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Malliavin calculus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Martingale (probability theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix calculus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mellin transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Morse theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parameter.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parametrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parity (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Principal bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probabilistic method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projection (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rectangle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Resolvent set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ricci curvature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann-Roch theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-adjoint operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-adjoint.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sign convention.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Smoothness.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sobolev space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Spectral theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Square root.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastic calculus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stochastic process.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Summation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Supertrace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Symmetric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Taylor series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Torus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Trace class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Translational symmetry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transversality (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Uniform convergence.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wave equation.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lebeau, Gilles.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no95029279</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The hypoelliptic Laplacian and Ray-Singer metrics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4q3fCTBPGwKG3RKvvbkC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bismut, Jean-Michel.</subfield><subfield code="t">Hypoelliptic Laplacian and Ray-Singer metrics.</subfield><subfield code="d">Princeton : Princeton University Press, 2008</subfield><subfield code="z">9780691137322</subfield><subfield code="w">(DLC) 2008062103</subfield><subfield code="w">(OCoLC)213133468</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 167.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28126689</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL483509</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10359240</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">305771</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3157740</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn593214464 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:17:23Z |
institution | BVB |
isbn | 9781400829064 1400829062 9786612458378 6612458372 |
language | English |
lccn | 2008062103 |
oclc_num | 593214464 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (viii, 367 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Bismut, Jean-Michel. http://id.loc.gov/authorities/names/n82207855 The hypoelliptic Laplacian and Ray-Singer metrics / Jean-Michel Bismut, Gilles Lebeau. Princeton : Princeton University Press, 2008. 1 online resource (viii, 367 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Annals of mathematics studies ; no. 167 Includes bibliographical references (pages 353-357) and indexes. Print version record. This book presents the analytic foundations to the theory of the hypoelliptic Laplacian. The hypoelliptic Laplacian, a second-order operator acting on the cotangent bundle of a compact manifold, is supposed to interpolate between the classical Laplacian and the geodesic flow. Jean-Michel Bismut and Gilles Lebeau establish the basic functional analytic properties of this operator, which is also studied from the perspective of local index theory and analytic torsion. The book shows that the hypoelliptic Laplacian provides a geometric version of the Fokker-Planck equations. The authors give th. Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula. Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt. In English. Differential equations, Hypoelliptic. http://id.loc.gov/authorities/subjects/sh85037901 Laplacian operator. http://id.loc.gov/authorities/subjects/sh85074667 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Équations différentielles hypo-elliptiques. Laplacien. Espaces métriques. MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Hodge-Theorie gnd http://d-nb.info/gnd/4135967-7 Hypoelliptischer Operator gnd http://d-nb.info/gnd/4138891-4 Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Elliptische differentiaalvergelijkingen. gtt Laplace-operatoren. gtt Metrische ruimten. (NL-LeOCL)078589746 gtt Partiële differentiaalvergelijkingen. gtt Tweede orde. (NL-LeOCL)078696275 gtt Alexander Grothendieck. Analytic function. Asymptote. Asymptotic expansion. Berezin integral. Bijection. Brownian dynamics. Brownian motion. Chaos theory. Chern class. Classical Wiener space. Clifford algebra. Cohomology. Combination. Commutator. Computation. Connection form. Coordinate system. Cotangent bundle. Covariance matrix. Curvature tensor. Curvature. De Rham cohomology. Derivative. Determinant. Differentiable manifold. Differential operator. Dirac operator. Direct proof. Eigenform. Eigenvalues and eigenvectors. Ellipse. Embedding. Equation. Estimation. Euclidean space. Explicit formula. Explicit formulae (L-function). Feynman-Kac formula. Fiber bundle. Fokker-Planck equation. Formal power series. Fourier series. Fourier transform. Fredholm determinant. Function space. Girsanov theorem. Ground state. Heat kernel. Hilbert space. Hodge theory. Holomorphic function. Holomorphic vector bundle. Hypoelliptic operator. Integration by parts. Invertible matrix. Logarithm. Malliavin calculus. Martingale (probability theory). Matrix calculus. Mellin transform. Morse theory. Notation. Parameter. Parametrix. Parity (mathematics). Polynomial. Principal bundle. Probabilistic method. Projection (linear algebra). Rectangle. Resolvent set. Ricci curvature. Riemann-Roch theorem. Scientific notation. Self-adjoint operator. Self-adjoint. Sign convention. Smoothness. Sobolev space. Spectral theory. Square root. Stochastic calculus. Stochastic process. Summation. Supertrace. Symmetric space. Tangent space. Taylor series. Theorem. Theory. Torus. Trace class. Translational symmetry. Transversality (mathematics). Uniform convergence. Variable (mathematics). Vector bundle. Vector space. Wave equation. Lebeau, Gilles. http://id.loc.gov/authorities/names/no95029279 has work: The hypoelliptic Laplacian and Ray-Singer metrics (Text) https://id.oclc.org/worldcat/entity/E39PCG4q3fCTBPGwKG3RKvvbkC https://id.oclc.org/worldcat/ontology/hasWork Print version: Bismut, Jean-Michel. Hypoelliptic Laplacian and Ray-Singer metrics. Princeton : Princeton University Press, 2008 9780691137322 (DLC) 2008062103 (OCoLC)213133468 Annals of mathematics studies ; no. 167. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771 Volltext |
spellingShingle | Bismut, Jean-Michel The hypoelliptic Laplacian and Ray-Singer metrics / Annals of mathematics studies ; Contents; Introduction; Chapter 1. Elliptic Riemann-Roch-Grothendieck and flat vector bundles; Chapter 2. The hypoelliptic Laplacian on the cotangent bundle; Chapter 3. Hodge theory, the hypoelliptic Laplacian and its heat kernel; Chapter 4. Hypoelliptic Laplacians and odd Chern forms; Chapter 5. The limit as t? +8 and b? 0 of the superconnection forms; Chapter 6. Hypoelliptic torsion and the hypoelliptic Ray-Singer metrics; Chapter 7. The hypoelliptic torsion forms of a vector bundle; Chapter 8. Hypoelliptic and elliptic torsions: a comparison formula. Chapter 9. A comparison formula for the Ray-Singer metricsChapter 10. The harmonic forms for b? 0 and the formal Hodge theorem; Chapter 11. A proof of equation (8.4.6); Chapter 12. A proof of equation (8.4.8); Chapter 13. A proof of equation (8.4.7); Chapter 14. The integration by parts formula; Chapter 15. The hypoelliptic estimates; Chapter 16. Harmonic oscillator and the J[sub(0)] function; Chapter 17. The limit of [omitt. Differential equations, Hypoelliptic. http://id.loc.gov/authorities/subjects/sh85037901 Laplacian operator. http://id.loc.gov/authorities/subjects/sh85074667 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Équations différentielles hypo-elliptiques. Laplacien. Espaces métriques. MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Hodge-Theorie gnd http://d-nb.info/gnd/4135967-7 Hypoelliptischer Operator gnd http://d-nb.info/gnd/4138891-4 Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Elliptische differentiaalvergelijkingen. gtt Laplace-operatoren. gtt Metrische ruimten. (NL-LeOCL)078589746 gtt Partiële differentiaalvergelijkingen. gtt Tweede orde. (NL-LeOCL)078696275 gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037901 http://id.loc.gov/authorities/subjects/sh85074667 http://id.loc.gov/authorities/subjects/sh85084441 http://d-nb.info/gnd/4135967-7 http://d-nb.info/gnd/4138891-4 http://d-nb.info/gnd/4166772-4 (NL-LeOCL)078589746 (NL-LeOCL)078696275 |
title | The hypoelliptic Laplacian and Ray-Singer metrics / |
title_auth | The hypoelliptic Laplacian and Ray-Singer metrics / |
title_exact_search | The hypoelliptic Laplacian and Ray-Singer metrics / |
title_full | The hypoelliptic Laplacian and Ray-Singer metrics / Jean-Michel Bismut, Gilles Lebeau. |
title_fullStr | The hypoelliptic Laplacian and Ray-Singer metrics / Jean-Michel Bismut, Gilles Lebeau. |
title_full_unstemmed | The hypoelliptic Laplacian and Ray-Singer metrics / Jean-Michel Bismut, Gilles Lebeau. |
title_short | The hypoelliptic Laplacian and Ray-Singer metrics / |
title_sort | hypoelliptic laplacian and ray singer metrics |
topic | Differential equations, Hypoelliptic. http://id.loc.gov/authorities/subjects/sh85037901 Laplacian operator. http://id.loc.gov/authorities/subjects/sh85074667 Metric spaces. http://id.loc.gov/authorities/subjects/sh85084441 Équations différentielles hypo-elliptiques. Laplacien. Espaces métriques. MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry General. bisacsh Differential equations, Hypoelliptic fast Laplacian operator fast Metric spaces fast Hodge-Theorie gnd http://d-nb.info/gnd/4135967-7 Hypoelliptischer Operator gnd http://d-nb.info/gnd/4138891-4 Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Elliptische differentiaalvergelijkingen. gtt Laplace-operatoren. gtt Metrische ruimten. (NL-LeOCL)078589746 gtt Partiële differentiaalvergelijkingen. gtt Tweede orde. (NL-LeOCL)078696275 gtt |
topic_facet | Differential equations, Hypoelliptic. Laplacian operator. Metric spaces. Équations différentielles hypo-elliptiques. Laplacien. Espaces métriques. MATHEMATICS Functional Analysis. MATHEMATICS Geometry General. Differential equations, Hypoelliptic Laplacian operator Metric spaces Hodge-Theorie Hypoelliptischer Operator Laplace-Operator Elliptische differentiaalvergelijkingen. Laplace-operatoren. Metrische ruimten. Partiële differentiaalvergelijkingen. Tweede orde. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305771 |
work_keys_str_mv | AT bismutjeanmichel thehypoellipticlaplacianandraysingermetrics AT lebeaugilles thehypoellipticlaplacianandraysingermetrics AT bismutjeanmichel hypoellipticlaplacianandraysingermetrics AT lebeaugilles hypoellipticlaplacianandraysingermetrics |