Generalized point models in structural mechanics /:
This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value pr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, N.J. :
World Scientific,
©2002.
|
Schriftenreihe: | Series on stability, vibration, and control of systems.
v. 5. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value problems for partial differential operators of the fourth order. Contents: Vibrations of Thin Elastic Plates and Classical Point Models; Operator Methods in Diffraction; Generalized Point Models; Discussions and Recommendations for Future Research. Readership: Graduate students and researchers in math. |
Beschreibung: | 1 online resource (xii, 262 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9812777903 9789812777904 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn560445090 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 020729s2002 si a ob 001 0 eng d | ||
010 | |a 2005297874 | ||
040 | |a MERUC |b eng |e pn |c MERUC |d CCO |d E7B |d OCLCQ |d COCUF |d N$T |d YDXCP |d CUY |d OCLCQ |d IDEBK |d OCLCF |d OCLCQ |d OCLCO |d EBLCP |d DEBSZ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d AZK |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d OCLCQ |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d K6U |d LEAUB |d UKCRE |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 181654725 |a 305126440 |a 647683325 |a 879074270 |a 961534466 |a 962606398 |a 988461005 |a 992074845 |a 1037707824 |a 1038693134 |a 1045464992 |a 1055376066 |a 1058085604 |a 1064032272 |a 1081255552 |a 1086488834 |a 1153549100 |a 1228570876 | ||
020 | |a 9812777903 |q (electronic bk.) | ||
020 | |a 9789812777904 |q (electronic bk.) | ||
020 | |z 9789810248789 | ||
020 | |z 9789812777904 | ||
020 | |z 9810248784 | ||
035 | |a (OCoLC)560445090 |z (OCoLC)181654725 |z (OCoLC)305126440 |z (OCoLC)647683325 |z (OCoLC)879074270 |z (OCoLC)961534466 |z (OCoLC)962606398 |z (OCoLC)988461005 |z (OCoLC)992074845 |z (OCoLC)1037707824 |z (OCoLC)1038693134 |z (OCoLC)1045464992 |z (OCoLC)1055376066 |z (OCoLC)1058085604 |z (OCoLC)1064032272 |z (OCoLC)1081255552 |z (OCoLC)1086488834 |z (OCoLC)1153549100 |z (OCoLC)1228570876 | ||
050 | 4 | |a T646 |b .A62 2002eb | |
072 | 7 | |a TEC |x 063000 |2 bisacsh | |
082 | 7 | |a 624.1/71 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Andronov, I. V. |q (Ivan V.) |1 https://id.oclc.org/worldcat/entity/E39PCjGTcYpvXJmXkpBGMBGcxC |0 http://id.loc.gov/authorities/names/no2001053213 | |
245 | 1 | 0 | |a Generalized point models in structural mechanics / |c Ivan V. Andronov. |
260 | |a Singapore ; |a River Edge, N.J. : |b World Scientific, |c ©2002. | ||
300 | |a 1 online resource (xii, 262 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a Series on stability, vibration, and control of systems. Series A ; |v v. 5 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface; Contents; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models; 1.1 Kirchhoff model for flexural waves; 1.1.1 Fundamentals of elasticity; 1.1.2 Flexural deformations of thin plates; 1.1.3 Differential operator and boundary conditions; 1.1.4 Flexural waves; 1.2 Fluid loaded plates; 1.3 Scattering problems and general properties of solutions; 1.3.1 Problem formulation; 1.3.2 Green's function of unperturbed problem; 1.3.3 Integral representation; 1.3.4 Optical theorem; 1.3.5 Uniqueness of the solution; 1.3.6 Flexural wave concentrated near a circular hole. | |
505 | 8 | |a 1.4 Classical point models1.4.1 Point models in two dimensions; 1.4.2 Scattering by crack at oblique incidence; 1.4.3 Point models in three dimensions; 1.5 Scattering problems for plates with infinite crack; 1.5.1 General properties of boundary value problems; 1.5.2 Scattering problems in isolated plates; 1.5.3 Scattering by pointwise joint; Chapter 2 Operator Methods in Diffraction; 2.1 Abstract operator theory; 2.1.1 Hilbert space; 2.1.2 Operators; 2.1.3 Adjoint symmetric and selfadjoint operators; 2.1.4 Extension theory; 2.2 Space L2 and differential operators; 2.2.1 Hilbert space L2. | |
505 | 8 | |a 2.2.2 Generalized derivatives2.2.3 Sobolev spaces and embedding theorems; 2.3 Problems of scattering; 2.3.1 Harmonic operator; 2.3.2 Bi-harmonic operator; 2.3.3 Operator of fluid loaded plate; 2.3.4 Another operator model of fluid loaded plate; 2.4 Extensions theory for differential operators; 2.4.1 Zero-range potentials for harmonic operator; 2.4.2 Zero-range potentials for bi-harmonic operator; 2.4.3 Zero-range potentials for fluid loaded plates; 2.4.4 Zero-range potentials for the plate with infinite crack; Chapter 3 Generalized Point Models. | |
505 | 8 | |a 3.1 Shortages of classical point models and the general procedure of generalized models construction3.2 Model of narrow crack; 3.2.1 Introduction; 3.2.2 The case of absolutely rigid plate; 3.2.3 The case of isolated plate; 3.2.4 Generalized point model of narrow crack; 3.2.5 Scattering by point model of narrow crack; 3.2.6 Diffraction by a crack of finite width in fluid loaded elastic plate; 3.2.7 Discussion and numerical results; 3.3 Model of a short crack; 3.3.1 Diffraction by a short crack in isolated plate; 3.3.2 Generalized point model of short crack. | |
505 | 8 | |a 3.3.3 Scattering by the generalized point model of short crack3.3.4 Diffraction by a short crack in fluid loaded plate; 3.3.5 Discussion; 3.4 Model of small circular hole; 3.4.1 The case of absolutely rigid plate; 3.4.2 The case of isolated plate; 3.4.3 Generalized point model; 3.4.4 Other models of circular holes; 3.5 Model of narrow joint of two semi-infinite plates; 3.5.1 Problem formulation; 3.5.2 Isolated plate; 3.5.3 Generalized model; 3.5.4 Scattering by the generalized model of narrow joint; Chapter 4 Discussions and Recommendations for Future Research. | |
520 | |a This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value problems for partial differential operators of the fourth order. Contents: Vibrations of Thin Elastic Plates and Classical Point Models; Operator Methods in Diffraction; Generalized Point Models; Discussions and Recommendations for Future Research. Readership: Graduate students and researchers in math. | ||
650 | 0 | |a Structural analysis (Engineering) |x Mathematical models. | |
650 | 0 | |a Structural engineering. |0 http://id.loc.gov/authorities/subjects/sh85129198 | |
650 | 6 | |a Théorie des constructions |x Modèles mathématiques. | |
650 | 6 | |a Technique de la construction. | |
650 | 7 | |a structural engineering. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Structural. |2 bisacsh | |
650 | 7 | |a Structural analysis (Engineering) |x Mathematical models |2 fast | |
650 | 7 | |a Structural engineering |2 fast | |
776 | 0 | 8 | |i Print version: |a Andronov, I.V. (Ivan V.). |t Generalized point models in structural mechanics. |d Singapore ; River Edge, NJ : World Scientific, ©2002 |z 9810248784 |z 9789810248789 |w (DLC) 2005297874 |w (OCoLC)50258739 |
830 | 0 | |a Series on stability, vibration, and control of systems. |n Series A ; |v v. 5. |0 http://id.loc.gov/authorities/names/n97060398 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210644 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684769 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1679609 | ||
938 | |a ebrary |b EBRY |n ebr10201158 | ||
938 | |a EBSCOhost |b EBSC |n 210644 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26007485 | ||
938 | |a YBP Library Services |b YANK |n 2736174 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn560445090 |
---|---|
_version_ | 1816881707692851200 |
adam_text | |
any_adam_object | |
author | Andronov, I. V. (Ivan V.) |
author_GND | http://id.loc.gov/authorities/names/no2001053213 |
author_facet | Andronov, I. V. (Ivan V.) |
author_role | |
author_sort | Andronov, I. V. |
author_variant | i v a iv iva |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | T646 |
callnumber-raw | T646 .A62 2002eb |
callnumber-search | T646 .A62 2002eb |
callnumber-sort | T 3646 A62 42002EB |
callnumber-subject | T - General Technology |
collection | ZDB-4-EBA |
contents | Preface; Contents; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models; 1.1 Kirchhoff model for flexural waves; 1.1.1 Fundamentals of elasticity; 1.1.2 Flexural deformations of thin plates; 1.1.3 Differential operator and boundary conditions; 1.1.4 Flexural waves; 1.2 Fluid loaded plates; 1.3 Scattering problems and general properties of solutions; 1.3.1 Problem formulation; 1.3.2 Green's function of unperturbed problem; 1.3.3 Integral representation; 1.3.4 Optical theorem; 1.3.5 Uniqueness of the solution; 1.3.6 Flexural wave concentrated near a circular hole. 1.4 Classical point models1.4.1 Point models in two dimensions; 1.4.2 Scattering by crack at oblique incidence; 1.4.3 Point models in three dimensions; 1.5 Scattering problems for plates with infinite crack; 1.5.1 General properties of boundary value problems; 1.5.2 Scattering problems in isolated plates; 1.5.3 Scattering by pointwise joint; Chapter 2 Operator Methods in Diffraction; 2.1 Abstract operator theory; 2.1.1 Hilbert space; 2.1.2 Operators; 2.1.3 Adjoint symmetric and selfadjoint operators; 2.1.4 Extension theory; 2.2 Space L2 and differential operators; 2.2.1 Hilbert space L2. 2.2.2 Generalized derivatives2.2.3 Sobolev spaces and embedding theorems; 2.3 Problems of scattering; 2.3.1 Harmonic operator; 2.3.2 Bi-harmonic operator; 2.3.3 Operator of fluid loaded plate; 2.3.4 Another operator model of fluid loaded plate; 2.4 Extensions theory for differential operators; 2.4.1 Zero-range potentials for harmonic operator; 2.4.2 Zero-range potentials for bi-harmonic operator; 2.4.3 Zero-range potentials for fluid loaded plates; 2.4.4 Zero-range potentials for the plate with infinite crack; Chapter 3 Generalized Point Models. 3.1 Shortages of classical point models and the general procedure of generalized models construction3.2 Model of narrow crack; 3.2.1 Introduction; 3.2.2 The case of absolutely rigid plate; 3.2.3 The case of isolated plate; 3.2.4 Generalized point model of narrow crack; 3.2.5 Scattering by point model of narrow crack; 3.2.6 Diffraction by a crack of finite width in fluid loaded elastic plate; 3.2.7 Discussion and numerical results; 3.3 Model of a short crack; 3.3.1 Diffraction by a short crack in isolated plate; 3.3.2 Generalized point model of short crack. 3.3.3 Scattering by the generalized point model of short crack3.3.4 Diffraction by a short crack in fluid loaded plate; 3.3.5 Discussion; 3.4 Model of small circular hole; 3.4.1 The case of absolutely rigid plate; 3.4.2 The case of isolated plate; 3.4.3 Generalized point model; 3.4.4 Other models of circular holes; 3.5 Model of narrow joint of two semi-infinite plates; 3.5.1 Problem formulation; 3.5.2 Isolated plate; 3.5.3 Generalized model; 3.5.4 Scattering by the generalized model of narrow joint; Chapter 4 Discussions and Recommendations for Future Research. |
ctrlnum | (OCoLC)560445090 |
dewey-full | 624.1/71 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1/71 |
dewey-search | 624.1/71 |
dewey-sort | 3624.1 271 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07151cam a2200673Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn560445090</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">020729s2002 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2005297874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MERUC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MERUC</subfield><subfield code="d">CCO</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">181654725</subfield><subfield code="a">305126440</subfield><subfield code="a">647683325</subfield><subfield code="a">879074270</subfield><subfield code="a">961534466</subfield><subfield code="a">962606398</subfield><subfield code="a">988461005</subfield><subfield code="a">992074845</subfield><subfield code="a">1037707824</subfield><subfield code="a">1038693134</subfield><subfield code="a">1045464992</subfield><subfield code="a">1055376066</subfield><subfield code="a">1058085604</subfield><subfield code="a">1064032272</subfield><subfield code="a">1081255552</subfield><subfield code="a">1086488834</subfield><subfield code="a">1153549100</subfield><subfield code="a">1228570876</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812777903</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812777904</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810248789</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812777904</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810248784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)560445090</subfield><subfield code="z">(OCoLC)181654725</subfield><subfield code="z">(OCoLC)305126440</subfield><subfield code="z">(OCoLC)647683325</subfield><subfield code="z">(OCoLC)879074270</subfield><subfield code="z">(OCoLC)961534466</subfield><subfield code="z">(OCoLC)962606398</subfield><subfield code="z">(OCoLC)988461005</subfield><subfield code="z">(OCoLC)992074845</subfield><subfield code="z">(OCoLC)1037707824</subfield><subfield code="z">(OCoLC)1038693134</subfield><subfield code="z">(OCoLC)1045464992</subfield><subfield code="z">(OCoLC)1055376066</subfield><subfield code="z">(OCoLC)1058085604</subfield><subfield code="z">(OCoLC)1064032272</subfield><subfield code="z">(OCoLC)1081255552</subfield><subfield code="z">(OCoLC)1086488834</subfield><subfield code="z">(OCoLC)1153549100</subfield><subfield code="z">(OCoLC)1228570876</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T646</subfield><subfield code="b">.A62 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">063000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">624.1/71</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andronov, I. V.</subfield><subfield code="q">(Ivan V.)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGTcYpvXJmXkpBGMBGcxC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2001053213</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized point models in structural mechanics /</subfield><subfield code="c">Ivan V. Andronov.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 262 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on stability, vibration, and control of systems. Series A ;</subfield><subfield code="v">v. 5</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Contents; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models; 1.1 Kirchhoff model for flexural waves; 1.1.1 Fundamentals of elasticity; 1.1.2 Flexural deformations of thin plates; 1.1.3 Differential operator and boundary conditions; 1.1.4 Flexural waves; 1.2 Fluid loaded plates; 1.3 Scattering problems and general properties of solutions; 1.3.1 Problem formulation; 1.3.2 Green's function of unperturbed problem; 1.3.3 Integral representation; 1.3.4 Optical theorem; 1.3.5 Uniqueness of the solution; 1.3.6 Flexural wave concentrated near a circular hole.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.4 Classical point models1.4.1 Point models in two dimensions; 1.4.2 Scattering by crack at oblique incidence; 1.4.3 Point models in three dimensions; 1.5 Scattering problems for plates with infinite crack; 1.5.1 General properties of boundary value problems; 1.5.2 Scattering problems in isolated plates; 1.5.3 Scattering by pointwise joint; Chapter 2 Operator Methods in Diffraction; 2.1 Abstract operator theory; 2.1.1 Hilbert space; 2.1.2 Operators; 2.1.3 Adjoint symmetric and selfadjoint operators; 2.1.4 Extension theory; 2.2 Space L2 and differential operators; 2.2.1 Hilbert space L2.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2.2 Generalized derivatives2.2.3 Sobolev spaces and embedding theorems; 2.3 Problems of scattering; 2.3.1 Harmonic operator; 2.3.2 Bi-harmonic operator; 2.3.3 Operator of fluid loaded plate; 2.3.4 Another operator model of fluid loaded plate; 2.4 Extensions theory for differential operators; 2.4.1 Zero-range potentials for harmonic operator; 2.4.2 Zero-range potentials for bi-harmonic operator; 2.4.3 Zero-range potentials for fluid loaded plates; 2.4.4 Zero-range potentials for the plate with infinite crack; Chapter 3 Generalized Point Models.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1 Shortages of classical point models and the general procedure of generalized models construction3.2 Model of narrow crack; 3.2.1 Introduction; 3.2.2 The case of absolutely rigid plate; 3.2.3 The case of isolated plate; 3.2.4 Generalized point model of narrow crack; 3.2.5 Scattering by point model of narrow crack; 3.2.6 Diffraction by a crack of finite width in fluid loaded elastic plate; 3.2.7 Discussion and numerical results; 3.3 Model of a short crack; 3.3.1 Diffraction by a short crack in isolated plate; 3.3.2 Generalized point model of short crack.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.3 Scattering by the generalized point model of short crack3.3.4 Diffraction by a short crack in fluid loaded plate; 3.3.5 Discussion; 3.4 Model of small circular hole; 3.4.1 The case of absolutely rigid plate; 3.4.2 The case of isolated plate; 3.4.3 Generalized point model; 3.4.4 Other models of circular holes; 3.5 Model of narrow joint of two semi-infinite plates; 3.5.1 Problem formulation; 3.5.2 Isolated plate; 3.5.3 Generalized model; 3.5.4 Scattering by the generalized model of narrow joint; Chapter 4 Discussions and Recommendations for Future Research.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value problems for partial differential operators of the fourth order. Contents: Vibrations of Thin Elastic Plates and Classical Point Models; Operator Methods in Diffraction; Generalized Point Models; Discussions and Recommendations for Future Research. Readership: Graduate students and researchers in math.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural engineering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85129198</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des constructions</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Technique de la construction.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">structural engineering.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Structural.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural engineering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Andronov, I.V. (Ivan V.).</subfield><subfield code="t">Generalized point models in structural mechanics.</subfield><subfield code="d">Singapore ; River Edge, NJ : World Scientific, ©2002</subfield><subfield code="z">9810248784</subfield><subfield code="z">9789810248789</subfield><subfield code="w">(DLC) 2005297874</subfield><subfield code="w">(OCoLC)50258739</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on stability, vibration, and control of systems.</subfield><subfield code="n">Series A ;</subfield><subfield code="v">v. 5.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n97060398</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210644</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684769</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1679609</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10201158</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">210644</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26007485</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2736174</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn560445090 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:17:00Z |
institution | BVB |
isbn | 9812777903 9789812777904 |
language | English |
lccn | 2005297874 |
oclc_num | 560445090 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 262 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | Series on stability, vibration, and control of systems. |
series2 | Series on stability, vibration, and control of systems. Series A ; |
spelling | Andronov, I. V. (Ivan V.) https://id.oclc.org/worldcat/entity/E39PCjGTcYpvXJmXkpBGMBGcxC http://id.loc.gov/authorities/names/no2001053213 Generalized point models in structural mechanics / Ivan V. Andronov. Singapore ; River Edge, N.J. : World Scientific, ©2002. 1 online resource (xii, 262 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda Series on stability, vibration, and control of systems. Series A ; v. 5 Includes bibliographical references and index. Print version record. Preface; Contents; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models; 1.1 Kirchhoff model for flexural waves; 1.1.1 Fundamentals of elasticity; 1.1.2 Flexural deformations of thin plates; 1.1.3 Differential operator and boundary conditions; 1.1.4 Flexural waves; 1.2 Fluid loaded plates; 1.3 Scattering problems and general properties of solutions; 1.3.1 Problem formulation; 1.3.2 Green's function of unperturbed problem; 1.3.3 Integral representation; 1.3.4 Optical theorem; 1.3.5 Uniqueness of the solution; 1.3.6 Flexural wave concentrated near a circular hole. 1.4 Classical point models1.4.1 Point models in two dimensions; 1.4.2 Scattering by crack at oblique incidence; 1.4.3 Point models in three dimensions; 1.5 Scattering problems for plates with infinite crack; 1.5.1 General properties of boundary value problems; 1.5.2 Scattering problems in isolated plates; 1.5.3 Scattering by pointwise joint; Chapter 2 Operator Methods in Diffraction; 2.1 Abstract operator theory; 2.1.1 Hilbert space; 2.1.2 Operators; 2.1.3 Adjoint symmetric and selfadjoint operators; 2.1.4 Extension theory; 2.2 Space L2 and differential operators; 2.2.1 Hilbert space L2. 2.2.2 Generalized derivatives2.2.3 Sobolev spaces and embedding theorems; 2.3 Problems of scattering; 2.3.1 Harmonic operator; 2.3.2 Bi-harmonic operator; 2.3.3 Operator of fluid loaded plate; 2.3.4 Another operator model of fluid loaded plate; 2.4 Extensions theory for differential operators; 2.4.1 Zero-range potentials for harmonic operator; 2.4.2 Zero-range potentials for bi-harmonic operator; 2.4.3 Zero-range potentials for fluid loaded plates; 2.4.4 Zero-range potentials for the plate with infinite crack; Chapter 3 Generalized Point Models. 3.1 Shortages of classical point models and the general procedure of generalized models construction3.2 Model of narrow crack; 3.2.1 Introduction; 3.2.2 The case of absolutely rigid plate; 3.2.3 The case of isolated plate; 3.2.4 Generalized point model of narrow crack; 3.2.5 Scattering by point model of narrow crack; 3.2.6 Diffraction by a crack of finite width in fluid loaded elastic plate; 3.2.7 Discussion and numerical results; 3.3 Model of a short crack; 3.3.1 Diffraction by a short crack in isolated plate; 3.3.2 Generalized point model of short crack. 3.3.3 Scattering by the generalized point model of short crack3.3.4 Diffraction by a short crack in fluid loaded plate; 3.3.5 Discussion; 3.4 Model of small circular hole; 3.4.1 The case of absolutely rigid plate; 3.4.2 The case of isolated plate; 3.4.3 Generalized point model; 3.4.4 Other models of circular holes; 3.5 Model of narrow joint of two semi-infinite plates; 3.5.1 Problem formulation; 3.5.2 Isolated plate; 3.5.3 Generalized model; 3.5.4 Scattering by the generalized model of narrow joint; Chapter 4 Discussions and Recommendations for Future Research. This book presents the idea of zero-range potentials and shows the limitations of the point models used in structural mechanics. It also offers specific examples from the theory of generalized functions, regularization of super-singular integral equations and other specifics of the boundary value problems for partial differential operators of the fourth order. Contents: Vibrations of Thin Elastic Plates and Classical Point Models; Operator Methods in Diffraction; Generalized Point Models; Discussions and Recommendations for Future Research. Readership: Graduate students and researchers in math. Structural analysis (Engineering) Mathematical models. Structural engineering. http://id.loc.gov/authorities/subjects/sh85129198 Théorie des constructions Modèles mathématiques. Technique de la construction. structural engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Structural analysis (Engineering) Mathematical models fast Structural engineering fast Print version: Andronov, I.V. (Ivan V.). Generalized point models in structural mechanics. Singapore ; River Edge, NJ : World Scientific, ©2002 9810248784 9789810248789 (DLC) 2005297874 (OCoLC)50258739 Series on stability, vibration, and control of systems. Series A ; v. 5. http://id.loc.gov/authorities/names/n97060398 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210644 Volltext |
spellingShingle | Andronov, I. V. (Ivan V.) Generalized point models in structural mechanics / Series on stability, vibration, and control of systems. Preface; Contents; Chapter 1 Vibrations of Thin Elastic Plates and Classical Point Models; 1.1 Kirchhoff model for flexural waves; 1.1.1 Fundamentals of elasticity; 1.1.2 Flexural deformations of thin plates; 1.1.3 Differential operator and boundary conditions; 1.1.4 Flexural waves; 1.2 Fluid loaded plates; 1.3 Scattering problems and general properties of solutions; 1.3.1 Problem formulation; 1.3.2 Green's function of unperturbed problem; 1.3.3 Integral representation; 1.3.4 Optical theorem; 1.3.5 Uniqueness of the solution; 1.3.6 Flexural wave concentrated near a circular hole. 1.4 Classical point models1.4.1 Point models in two dimensions; 1.4.2 Scattering by crack at oblique incidence; 1.4.3 Point models in three dimensions; 1.5 Scattering problems for plates with infinite crack; 1.5.1 General properties of boundary value problems; 1.5.2 Scattering problems in isolated plates; 1.5.3 Scattering by pointwise joint; Chapter 2 Operator Methods in Diffraction; 2.1 Abstract operator theory; 2.1.1 Hilbert space; 2.1.2 Operators; 2.1.3 Adjoint symmetric and selfadjoint operators; 2.1.4 Extension theory; 2.2 Space L2 and differential operators; 2.2.1 Hilbert space L2. 2.2.2 Generalized derivatives2.2.3 Sobolev spaces and embedding theorems; 2.3 Problems of scattering; 2.3.1 Harmonic operator; 2.3.2 Bi-harmonic operator; 2.3.3 Operator of fluid loaded plate; 2.3.4 Another operator model of fluid loaded plate; 2.4 Extensions theory for differential operators; 2.4.1 Zero-range potentials for harmonic operator; 2.4.2 Zero-range potentials for bi-harmonic operator; 2.4.3 Zero-range potentials for fluid loaded plates; 2.4.4 Zero-range potentials for the plate with infinite crack; Chapter 3 Generalized Point Models. 3.1 Shortages of classical point models and the general procedure of generalized models construction3.2 Model of narrow crack; 3.2.1 Introduction; 3.2.2 The case of absolutely rigid plate; 3.2.3 The case of isolated plate; 3.2.4 Generalized point model of narrow crack; 3.2.5 Scattering by point model of narrow crack; 3.2.6 Diffraction by a crack of finite width in fluid loaded elastic plate; 3.2.7 Discussion and numerical results; 3.3 Model of a short crack; 3.3.1 Diffraction by a short crack in isolated plate; 3.3.2 Generalized point model of short crack. 3.3.3 Scattering by the generalized point model of short crack3.3.4 Diffraction by a short crack in fluid loaded plate; 3.3.5 Discussion; 3.4 Model of small circular hole; 3.4.1 The case of absolutely rigid plate; 3.4.2 The case of isolated plate; 3.4.3 Generalized point model; 3.4.4 Other models of circular holes; 3.5 Model of narrow joint of two semi-infinite plates; 3.5.1 Problem formulation; 3.5.2 Isolated plate; 3.5.3 Generalized model; 3.5.4 Scattering by the generalized model of narrow joint; Chapter 4 Discussions and Recommendations for Future Research. Structural analysis (Engineering) Mathematical models. Structural engineering. http://id.loc.gov/authorities/subjects/sh85129198 Théorie des constructions Modèles mathématiques. Technique de la construction. structural engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Structural analysis (Engineering) Mathematical models fast Structural engineering fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85129198 |
title | Generalized point models in structural mechanics / |
title_auth | Generalized point models in structural mechanics / |
title_exact_search | Generalized point models in structural mechanics / |
title_full | Generalized point models in structural mechanics / Ivan V. Andronov. |
title_fullStr | Generalized point models in structural mechanics / Ivan V. Andronov. |
title_full_unstemmed | Generalized point models in structural mechanics / Ivan V. Andronov. |
title_short | Generalized point models in structural mechanics / |
title_sort | generalized point models in structural mechanics |
topic | Structural analysis (Engineering) Mathematical models. Structural engineering. http://id.loc.gov/authorities/subjects/sh85129198 Théorie des constructions Modèles mathématiques. Technique de la construction. structural engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Structural analysis (Engineering) Mathematical models fast Structural engineering fast |
topic_facet | Structural analysis (Engineering) Mathematical models. Structural engineering. Théorie des constructions Modèles mathématiques. Technique de la construction. structural engineering. TECHNOLOGY & ENGINEERING Structural. Structural analysis (Engineering) Mathematical models Structural engineering |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=210644 |
work_keys_str_mv | AT andronoviv generalizedpointmodelsinstructuralmechanics |