Neural networks in atmospheric remote sensing /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Boston] ; [London] :
Artech House,
[2009]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xv, 215 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781596933736 1596933739 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn556217600 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 100316t20092009maua ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d OCLCQ |d WAU |d OCLCQ |d OCLCF |d GZM |d E7B |d DEBSZ |d OCLCO |d NLGGC |d EBLCP |d NNO |d OCLCQ |d AGLDB |d PIFAG |d OCLCQ |d JBG |d WY@ |d LUE |d VTS |d YOU |d STF |d M8D |d UKAHL |d NJP |d OCLCQ |d OCLCO |d OCLCQ |d PSYSI |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 647840660 |a 923567166 |a 929146977 |a 1114232982 | ||
020 | |a 9781596933736 |q (electronic bk.) | ||
020 | |a 1596933739 |q (electronic bk.) | ||
020 | |z 9781596933729 |q (print) | ||
020 | |z 1596933720 |q (print) | ||
035 | |a (OCoLC)556217600 |z (OCoLC)647840660 |z (OCoLC)923567166 |z (OCoLC)929146977 |z (OCoLC)1114232982 | ||
050 | 4 | |a QA76.87 |b .B576 2009eb | |
072 | 7 | |a COM |x 044000 |2 bisacsh | |
082 | 7 | |a 006.32 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Blackwell, William J. |0 http://id.loc.gov/authorities/names/nb2009022443 | |
245 | 1 | 0 | |a Neural networks in atmospheric remote sensing / |c William J. Blackwell, Frederick W. Chen. |
264 | 1 | |a [Boston] ; |a [London] : |b Artech House, |c [2009] | |
264 | 4 | |c ©2009 | |
300 | |a 1 online resource (xv, 215 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a ""Neural Networks in Atmospheric Remote Sensing""; ""Contents""; ""Preface""; ""1 Introduction""; ""1.1 Present Challenges""; ""1.2 Solutions Based on Neural Networks""; ""1.3 Mathematical Notation""; ""References""; ""2 Physical Background of Atmospheric Remote Sensing""; ""2.1 Overview of the Composition and Thermal Structure of the Earth�s Atmosphere""; ""2.1.1 Chemical Composition of the Atmosphere""; ""2.1.2 Vertical Distribution of Pressure and Density""; ""2.1.3 Thermal Structure of the Atmosphere""; ""2.1.4 Cloud Microphysics""; ""2.2 Electromagnetic Wave Propagation"" | |
505 | 8 | |a ""2.2.1 Maxwell�s Equations and the Wave Equation""""2.2.2 Polarization""; ""2.2.3 Reflection and Transmission at a Planar Boundary""; ""2.3 Absorption of Electromagnetic Waves by Atmospheric Gases""; ""2.3.1 Mechanisms of Molecular Absorption""; ""2.3.2 Line Shapes""; ""2.3.3 Absorption Coefficients and Transmission Functions""; ""2.3.4 The Atmospheric Absorption Spectra""; ""2.4 Scattering of Electromagnetic Waves by Atmospheric Particles""; ""2.4.1 Mie Scattering""; ""2.4.2 The Rayleigh Approximation""; ""2.4.3 Comparison of Scattering and Absorption byHydrometeors"" | |
505 | 8 | |a ""2.5 Radiative Transfer in a Nonscattering Planar-Stratified Atmosphere""""2.5.1 Equilibrium Radiation: Planck and Kirchhoff�s Laws""; ""2.5.2 Radiative Transfer Due to Emission and Absorption""; ""2.5.3 Integral Form of the Radiative Transfer Equation""; ""2.5.4 Weighting Function""; ""2.6 Passive Spectrometer Systems""; ""2.6.1 Optical Spectrometers""; ""2.6.2 Microwave Spectrometers""; ""2.7 Summary""; ""References""; ""3 An Overview of Inversion Problems in Atmospheric Remote Sensing""; ""3.1 Mathematical Notation""; ""3.2 Optimality"" | |
505 | 8 | |a 3.3 Methods That Exploit Statistical Dependence3.3.1 The Bayesian Approach -- 3.3.2 Linear and Nonlinear Regression Methods -- 3.4 Physical Inversion Methods -- 3.4.1 The Linear Case -- 3.4.2 The Nonlinear Case -- 3.5 Hybrid Inversion Methods -- 3.5.1 Improved Retrieval Accuracy -- 3.5.2 Improved Retrieval Efficiency -- 3.6 Error Analysis -- 3.6.1 Analytical Analysis -- 3.6.2 Perturbation Analysis -- 3.7 Summary -- References -- 4 Signal Processing and Data Representation -- 4.1 Analysis of the Information Content of Hyperspectral Data | |
505 | 8 | |a 4.1.1 Shannon Information Content4.1.2 Degrees of Freedom -- 4.2 Principal Components Analysis (PCA) -- 4.2.1 Nonlinear PCA -- 4.2.2 Linear PCA -- 4.2.3 Principal Components Transforms -- 4.2.4 The Projected PC Transform -- 4.2.5 Evaluation of Radiance Compression Performance Using Two Different Metrics -- 4.3 Representation of Nonlinear Features -- 4.4 Summary -- References -- 5 Introduction to Multilayer Perceptron Neural Networks -- 5.1 A Brief Overview of Machine Learning -- 5.1.1 Supervised and Unsupervised Learning -- 5.1.2 Classification and Regression | |
650 | 0 | |a Neural networks (Computer science) |0 http://id.loc.gov/authorities/subjects/sh90001937 | |
650 | 0 | |a Atmosphere |x Remote sensing. | |
650 | 0 | |a Microwave remote sensing. |0 http://id.loc.gov/authorities/subjects/sh88005106 | |
650 | 0 | |a Thermography. |0 http://id.loc.gov/authorities/subjects/sh85134793 | |
650 | 6 | |a Réseaux neuronaux (Informatique) | |
650 | 6 | |a Atmosphère |x Télédétection. | |
650 | 6 | |a Télédétection hyperfréquence. | |
650 | 6 | |a Thermographie. | |
650 | 7 | |a infrared thermography. |2 aat | |
650 | 7 | |a COMPUTERS |x Neural Networks. |2 bisacsh | |
650 | 7 | |a Atmosphere |x Remote sensing |2 fast | |
650 | 7 | |a Microwave remote sensing |2 fast | |
650 | 7 | |a Neural networks (Computer science) |2 fast | |
650 | 7 | |a Thermography |2 fast | |
700 | 1 | |a Chen, Frederick W. |0 http://id.loc.gov/authorities/names/nb2009022445 | |
758 | |i has work: |a Neural networks in atmospheric remote sensing (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH8cQ9prTfPQqjxq8kFp6C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Blackwell, William J. |t Neural networks in atmospheric remote sensing. |d Boston, Mass. : Artech House, ©2009 |z 9781596933729 |w (DLC) 2009281340 |w (OCoLC)298184765 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305433 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25159011 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3002019 | ||
938 | |a EBSCOhost |b EBSC |n 305433 | ||
938 | |a YBP Library Services |b YANK |n 3157869 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn556217600 |
---|---|
_version_ | 1816881705739354112 |
adam_text | |
any_adam_object | |
author | Blackwell, William J. |
author2 | Chen, Frederick W. |
author2_role | |
author2_variant | f w c fw fwc |
author_GND | http://id.loc.gov/authorities/names/nb2009022443 http://id.loc.gov/authorities/names/nb2009022445 |
author_facet | Blackwell, William J. Chen, Frederick W. |
author_role | |
author_sort | Blackwell, William J. |
author_variant | w j b wj wjb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.87 .B576 2009eb |
callnumber-search | QA76.87 .B576 2009eb |
callnumber-sort | QA 276.87 B576 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ""Neural Networks in Atmospheric Remote Sensing""; ""Contents""; ""Preface""; ""1 Introduction""; ""1.1 Present Challenges""; ""1.2 Solutions Based on Neural Networks""; ""1.3 Mathematical Notation""; ""References""; ""2 Physical Background of Atmospheric Remote Sensing""; ""2.1 Overview of the Composition and Thermal Structure of the Earth�s Atmosphere""; ""2.1.1 Chemical Composition of the Atmosphere""; ""2.1.2 Vertical Distribution of Pressure and Density""; ""2.1.3 Thermal Structure of the Atmosphere""; ""2.1.4 Cloud Microphysics""; ""2.2 Electromagnetic Wave Propagation"" ""2.2.1 Maxwell�s Equations and the Wave Equation""""2.2.2 Polarization""; ""2.2.3 Reflection and Transmission at a Planar Boundary""; ""2.3 Absorption of Electromagnetic Waves by Atmospheric Gases""; ""2.3.1 Mechanisms of Molecular Absorption""; ""2.3.2 Line Shapes""; ""2.3.3 Absorption Coefficients and Transmission Functions""; ""2.3.4 The Atmospheric Absorption Spectra""; ""2.4 Scattering of Electromagnetic Waves by Atmospheric Particles""; ""2.4.1 Mie Scattering""; ""2.4.2 The Rayleigh Approximation""; ""2.4.3 Comparison of Scattering and Absorption byHydrometeors"" ""2.5 Radiative Transfer in a Nonscattering Planar-Stratified Atmosphere""""2.5.1 Equilibrium Radiation: Planck and Kirchhoff�s Laws""; ""2.5.2 Radiative Transfer Due to Emission and Absorption""; ""2.5.3 Integral Form of the Radiative Transfer Equation""; ""2.5.4 Weighting Function""; ""2.6 Passive Spectrometer Systems""; ""2.6.1 Optical Spectrometers""; ""2.6.2 Microwave Spectrometers""; ""2.7 Summary""; ""References""; ""3 An Overview of Inversion Problems in Atmospheric Remote Sensing""; ""3.1 Mathematical Notation""; ""3.2 Optimality"" 3.3 Methods That Exploit Statistical Dependence3.3.1 The Bayesian Approach -- 3.3.2 Linear and Nonlinear Regression Methods -- 3.4 Physical Inversion Methods -- 3.4.1 The Linear Case -- 3.4.2 The Nonlinear Case -- 3.5 Hybrid Inversion Methods -- 3.5.1 Improved Retrieval Accuracy -- 3.5.2 Improved Retrieval Efficiency -- 3.6 Error Analysis -- 3.6.1 Analytical Analysis -- 3.6.2 Perturbation Analysis -- 3.7 Summary -- References -- 4 Signal Processing and Data Representation -- 4.1 Analysis of the Information Content of Hyperspectral Data 4.1.1 Shannon Information Content4.1.2 Degrees of Freedom -- 4.2 Principal Components Analysis (PCA) -- 4.2.1 Nonlinear PCA -- 4.2.2 Linear PCA -- 4.2.3 Principal Components Transforms -- 4.2.4 The Projected PC Transform -- 4.2.5 Evaluation of Radiance Compression Performance Using Two Different Metrics -- 4.3 Representation of Nonlinear Features -- 4.4 Summary -- References -- 5 Introduction to Multilayer Perceptron Neural Networks -- 5.1 A Brief Overview of Machine Learning -- 5.1.1 Supervised and Unsupervised Learning -- 5.1.2 Classification and Regression |
ctrlnum | (OCoLC)556217600 |
dewey-full | 006.32 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.32 |
dewey-search | 006.32 |
dewey-sort | 16.32 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05991cam a2200685 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn556217600</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">100316t20092009maua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WAU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">GZM</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NLGGC</subfield><subfield code="d">EBLCP</subfield><subfield code="d">NNO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">WY@</subfield><subfield code="d">LUE</subfield><subfield code="d">VTS</subfield><subfield code="d">YOU</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">NJP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">PSYSI</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">647840660</subfield><subfield code="a">923567166</subfield><subfield code="a">929146977</subfield><subfield code="a">1114232982</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781596933736</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1596933739</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781596933729</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1596933720</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)556217600</subfield><subfield code="z">(OCoLC)647840660</subfield><subfield code="z">(OCoLC)923567166</subfield><subfield code="z">(OCoLC)929146977</subfield><subfield code="z">(OCoLC)1114232982</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.87</subfield><subfield code="b">.B576 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">044000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.32</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blackwell, William J.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2009022443</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural networks in atmospheric remote sensing /</subfield><subfield code="c">William J. Blackwell, Frederick W. Chen.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Boston] ;</subfield><subfield code="a">[London] :</subfield><subfield code="b">Artech House,</subfield><subfield code="c">[2009]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 215 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""Neural Networks in Atmospheric Remote Sensing""; ""Contents""; ""Preface""; ""1 Introduction""; ""1.1 Present Challenges""; ""1.2 Solutions Based on Neural Networks""; ""1.3 Mathematical Notation""; ""References""; ""2 Physical Background of Atmospheric Remote Sensing""; ""2.1 Overview of the Composition and Thermal Structure of the Earthâ€?s Atmosphere""; ""2.1.1 Chemical Composition of the Atmosphere""; ""2.1.2 Vertical Distribution of Pressure and Density""; ""2.1.3 Thermal Structure of the Atmosphere""; ""2.1.4 Cloud Microphysics""; ""2.2 Electromagnetic Wave Propagation""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""2.2.1 Maxwellâ€?s Equations and the Wave Equation""""2.2.2 Polarization""; ""2.2.3 Reflection and Transmission at a Planar Boundary""; ""2.3 Absorption of Electromagnetic Waves by Atmospheric Gases""; ""2.3.1 Mechanisms of Molecular Absorption""; ""2.3.2 Line Shapes""; ""2.3.3 Absorption Coefficients and Transmission Functions""; ""2.3.4 The Atmospheric Absorption Spectra""; ""2.4 Scattering of Electromagnetic Waves by Atmospheric Particles""; ""2.4.1 Mie Scattering""; ""2.4.2 The Rayleigh Approximation""; ""2.4.3 Comparison of Scattering and Absorption byHydrometeors""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""2.5 Radiative Transfer in a Nonscattering Planar-Stratified Atmosphere""""2.5.1 Equilibrium Radiation: Planck and Kirchhoffâ€?s Laws""; ""2.5.2 Radiative Transfer Due to Emission and Absorption""; ""2.5.3 Integral Form of the Radiative Transfer Equation""; ""2.5.4 Weighting Function""; ""2.6 Passive Spectrometer Systems""; ""2.6.1 Optical Spectrometers""; ""2.6.2 Microwave Spectrometers""; ""2.7 Summary""; ""References""; ""3 An Overview of Inversion Problems in Atmospheric Remote Sensing""; ""3.1 Mathematical Notation""; ""3.2 Optimality""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3 Methods That Exploit Statistical Dependence3.3.1 The Bayesian Approach -- 3.3.2 Linear and Nonlinear Regression Methods -- 3.4 Physical Inversion Methods -- 3.4.1 The Linear Case -- 3.4.2 The Nonlinear Case -- 3.5 Hybrid Inversion Methods -- 3.5.1 Improved Retrieval Accuracy -- 3.5.2 Improved Retrieval Efficiency -- 3.6 Error Analysis -- 3.6.1 Analytical Analysis -- 3.6.2 Perturbation Analysis -- 3.7 Summary -- References -- 4 Signal Processing and Data Representation -- 4.1 Analysis of the Information Content of Hyperspectral Data</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1.1 Shannon Information Content4.1.2 Degrees of Freedom -- 4.2 Principal Components Analysis (PCA) -- 4.2.1 Nonlinear PCA -- 4.2.2 Linear PCA -- 4.2.3 Principal Components Transforms -- 4.2.4 The Projected PC Transform -- 4.2.5 Evaluation of Radiance Compression Performance Using Two Different Metrics -- 4.3 Representation of Nonlinear Features -- 4.4 Summary -- References -- 5 Introduction to Multilayer Perceptron Neural Networks -- 5.1 A Brief Overview of Machine Learning -- 5.1.1 Supervised and Unsupervised Learning -- 5.1.2 Classification and Regression</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90001937</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Atmosphere</subfield><subfield code="x">Remote sensing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Microwave remote sensing.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88005106</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Thermography.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85134793</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Atmosphère</subfield><subfield code="x">Télédétection.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Télédétection hyperfréquence.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Thermographie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">infrared thermography.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Neural Networks.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Atmosphere</subfield><subfield code="x">Remote sensing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Microwave remote sensing</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermography</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Frederick W.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2009022445</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Neural networks in atmospheric remote sensing (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH8cQ9prTfPQqjxq8kFp6C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Blackwell, William J.</subfield><subfield code="t">Neural networks in atmospheric remote sensing.</subfield><subfield code="d">Boston, Mass. : Artech House, ©2009</subfield><subfield code="z">9781596933729</subfield><subfield code="w">(DLC) 2009281340</subfield><subfield code="w">(OCoLC)298184765</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305433</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25159011</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3002019</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">305433</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3157869</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn556217600 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:58Z |
institution | BVB |
isbn | 9781596933736 1596933739 |
language | English |
oclc_num | 556217600 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 215 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Artech House, |
record_format | marc |
spelling | Blackwell, William J. http://id.loc.gov/authorities/names/nb2009022443 Neural networks in atmospheric remote sensing / William J. Blackwell, Frederick W. Chen. [Boston] ; [London] : Artech House, [2009] ©2009 1 online resource (xv, 215 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. ""Neural Networks in Atmospheric Remote Sensing""; ""Contents""; ""Preface""; ""1 Introduction""; ""1.1 Present Challenges""; ""1.2 Solutions Based on Neural Networks""; ""1.3 Mathematical Notation""; ""References""; ""2 Physical Background of Atmospheric Remote Sensing""; ""2.1 Overview of the Composition and Thermal Structure of the Earthâ€?s Atmosphere""; ""2.1.1 Chemical Composition of the Atmosphere""; ""2.1.2 Vertical Distribution of Pressure and Density""; ""2.1.3 Thermal Structure of the Atmosphere""; ""2.1.4 Cloud Microphysics""; ""2.2 Electromagnetic Wave Propagation"" ""2.2.1 Maxwellâ€?s Equations and the Wave Equation""""2.2.2 Polarization""; ""2.2.3 Reflection and Transmission at a Planar Boundary""; ""2.3 Absorption of Electromagnetic Waves by Atmospheric Gases""; ""2.3.1 Mechanisms of Molecular Absorption""; ""2.3.2 Line Shapes""; ""2.3.3 Absorption Coefficients and Transmission Functions""; ""2.3.4 The Atmospheric Absorption Spectra""; ""2.4 Scattering of Electromagnetic Waves by Atmospheric Particles""; ""2.4.1 Mie Scattering""; ""2.4.2 The Rayleigh Approximation""; ""2.4.3 Comparison of Scattering and Absorption byHydrometeors"" ""2.5 Radiative Transfer in a Nonscattering Planar-Stratified Atmosphere""""2.5.1 Equilibrium Radiation: Planck and Kirchhoffâ€?s Laws""; ""2.5.2 Radiative Transfer Due to Emission and Absorption""; ""2.5.3 Integral Form of the Radiative Transfer Equation""; ""2.5.4 Weighting Function""; ""2.6 Passive Spectrometer Systems""; ""2.6.1 Optical Spectrometers""; ""2.6.2 Microwave Spectrometers""; ""2.7 Summary""; ""References""; ""3 An Overview of Inversion Problems in Atmospheric Remote Sensing""; ""3.1 Mathematical Notation""; ""3.2 Optimality"" 3.3 Methods That Exploit Statistical Dependence3.3.1 The Bayesian Approach -- 3.3.2 Linear and Nonlinear Regression Methods -- 3.4 Physical Inversion Methods -- 3.4.1 The Linear Case -- 3.4.2 The Nonlinear Case -- 3.5 Hybrid Inversion Methods -- 3.5.1 Improved Retrieval Accuracy -- 3.5.2 Improved Retrieval Efficiency -- 3.6 Error Analysis -- 3.6.1 Analytical Analysis -- 3.6.2 Perturbation Analysis -- 3.7 Summary -- References -- 4 Signal Processing and Data Representation -- 4.1 Analysis of the Information Content of Hyperspectral Data 4.1.1 Shannon Information Content4.1.2 Degrees of Freedom -- 4.2 Principal Components Analysis (PCA) -- 4.2.1 Nonlinear PCA -- 4.2.2 Linear PCA -- 4.2.3 Principal Components Transforms -- 4.2.4 The Projected PC Transform -- 4.2.5 Evaluation of Radiance Compression Performance Using Two Different Metrics -- 4.3 Representation of Nonlinear Features -- 4.4 Summary -- References -- 5 Introduction to Multilayer Perceptron Neural Networks -- 5.1 A Brief Overview of Machine Learning -- 5.1.1 Supervised and Unsupervised Learning -- 5.1.2 Classification and Regression Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Atmosphere Remote sensing. Microwave remote sensing. http://id.loc.gov/authorities/subjects/sh88005106 Thermography. http://id.loc.gov/authorities/subjects/sh85134793 Réseaux neuronaux (Informatique) Atmosphère Télédétection. Télédétection hyperfréquence. Thermographie. infrared thermography. aat COMPUTERS Neural Networks. bisacsh Atmosphere Remote sensing fast Microwave remote sensing fast Neural networks (Computer science) fast Thermography fast Chen, Frederick W. http://id.loc.gov/authorities/names/nb2009022445 has work: Neural networks in atmospheric remote sensing (Text) https://id.oclc.org/worldcat/entity/E39PCH8cQ9prTfPQqjxq8kFp6C https://id.oclc.org/worldcat/ontology/hasWork Print version: Blackwell, William J. Neural networks in atmospheric remote sensing. Boston, Mass. : Artech House, ©2009 9781596933729 (DLC) 2009281340 (OCoLC)298184765 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305433 Volltext |
spellingShingle | Blackwell, William J. Neural networks in atmospheric remote sensing / ""Neural Networks in Atmospheric Remote Sensing""; ""Contents""; ""Preface""; ""1 Introduction""; ""1.1 Present Challenges""; ""1.2 Solutions Based on Neural Networks""; ""1.3 Mathematical Notation""; ""References""; ""2 Physical Background of Atmospheric Remote Sensing""; ""2.1 Overview of the Composition and Thermal Structure of the Earthâ€?s Atmosphere""; ""2.1.1 Chemical Composition of the Atmosphere""; ""2.1.2 Vertical Distribution of Pressure and Density""; ""2.1.3 Thermal Structure of the Atmosphere""; ""2.1.4 Cloud Microphysics""; ""2.2 Electromagnetic Wave Propagation"" ""2.2.1 Maxwellâ€?s Equations and the Wave Equation""""2.2.2 Polarization""; ""2.2.3 Reflection and Transmission at a Planar Boundary""; ""2.3 Absorption of Electromagnetic Waves by Atmospheric Gases""; ""2.3.1 Mechanisms of Molecular Absorption""; ""2.3.2 Line Shapes""; ""2.3.3 Absorption Coefficients and Transmission Functions""; ""2.3.4 The Atmospheric Absorption Spectra""; ""2.4 Scattering of Electromagnetic Waves by Atmospheric Particles""; ""2.4.1 Mie Scattering""; ""2.4.2 The Rayleigh Approximation""; ""2.4.3 Comparison of Scattering and Absorption byHydrometeors"" ""2.5 Radiative Transfer in a Nonscattering Planar-Stratified Atmosphere""""2.5.1 Equilibrium Radiation: Planck and Kirchhoffâ€?s Laws""; ""2.5.2 Radiative Transfer Due to Emission and Absorption""; ""2.5.3 Integral Form of the Radiative Transfer Equation""; ""2.5.4 Weighting Function""; ""2.6 Passive Spectrometer Systems""; ""2.6.1 Optical Spectrometers""; ""2.6.2 Microwave Spectrometers""; ""2.7 Summary""; ""References""; ""3 An Overview of Inversion Problems in Atmospheric Remote Sensing""; ""3.1 Mathematical Notation""; ""3.2 Optimality"" 3.3 Methods That Exploit Statistical Dependence3.3.1 The Bayesian Approach -- 3.3.2 Linear and Nonlinear Regression Methods -- 3.4 Physical Inversion Methods -- 3.4.1 The Linear Case -- 3.4.2 The Nonlinear Case -- 3.5 Hybrid Inversion Methods -- 3.5.1 Improved Retrieval Accuracy -- 3.5.2 Improved Retrieval Efficiency -- 3.6 Error Analysis -- 3.6.1 Analytical Analysis -- 3.6.2 Perturbation Analysis -- 3.7 Summary -- References -- 4 Signal Processing and Data Representation -- 4.1 Analysis of the Information Content of Hyperspectral Data 4.1.1 Shannon Information Content4.1.2 Degrees of Freedom -- 4.2 Principal Components Analysis (PCA) -- 4.2.1 Nonlinear PCA -- 4.2.2 Linear PCA -- 4.2.3 Principal Components Transforms -- 4.2.4 The Projected PC Transform -- 4.2.5 Evaluation of Radiance Compression Performance Using Two Different Metrics -- 4.3 Representation of Nonlinear Features -- 4.4 Summary -- References -- 5 Introduction to Multilayer Perceptron Neural Networks -- 5.1 A Brief Overview of Machine Learning -- 5.1.1 Supervised and Unsupervised Learning -- 5.1.2 Classification and Regression Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Atmosphere Remote sensing. Microwave remote sensing. http://id.loc.gov/authorities/subjects/sh88005106 Thermography. http://id.loc.gov/authorities/subjects/sh85134793 Réseaux neuronaux (Informatique) Atmosphère Télédétection. Télédétection hyperfréquence. Thermographie. infrared thermography. aat COMPUTERS Neural Networks. bisacsh Atmosphere Remote sensing fast Microwave remote sensing fast Neural networks (Computer science) fast Thermography fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh90001937 http://id.loc.gov/authorities/subjects/sh88005106 http://id.loc.gov/authorities/subjects/sh85134793 |
title | Neural networks in atmospheric remote sensing / |
title_auth | Neural networks in atmospheric remote sensing / |
title_exact_search | Neural networks in atmospheric remote sensing / |
title_full | Neural networks in atmospheric remote sensing / William J. Blackwell, Frederick W. Chen. |
title_fullStr | Neural networks in atmospheric remote sensing / William J. Blackwell, Frederick W. Chen. |
title_full_unstemmed | Neural networks in atmospheric remote sensing / William J. Blackwell, Frederick W. Chen. |
title_short | Neural networks in atmospheric remote sensing / |
title_sort | neural networks in atmospheric remote sensing |
topic | Neural networks (Computer science) http://id.loc.gov/authorities/subjects/sh90001937 Atmosphere Remote sensing. Microwave remote sensing. http://id.loc.gov/authorities/subjects/sh88005106 Thermography. http://id.loc.gov/authorities/subjects/sh85134793 Réseaux neuronaux (Informatique) Atmosphère Télédétection. Télédétection hyperfréquence. Thermographie. infrared thermography. aat COMPUTERS Neural Networks. bisacsh Atmosphere Remote sensing fast Microwave remote sensing fast Neural networks (Computer science) fast Thermography fast |
topic_facet | Neural networks (Computer science) Atmosphere Remote sensing. Microwave remote sensing. Thermography. Réseaux neuronaux (Informatique) Atmosphère Télédétection. Télédétection hyperfréquence. Thermographie. infrared thermography. COMPUTERS Neural Networks. Atmosphere Remote sensing Microwave remote sensing Thermography |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305433 |
work_keys_str_mv | AT blackwellwilliamj neuralnetworksinatmosphericremotesensing AT chenfrederickw neuralnetworksinatmosphericremotesensing |