Solitons, instantons, and twistors /:
Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford ; New York :
Oxford University Press,
2010.
|
Schriftenreihe: | Oxford mathematics.
Oxford graduate texts in mathematics ; 19. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan. |
Beschreibung: | 1 online resource (xi, 359 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191574108 0191574104 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn507435856 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 090813s2010 enka ob 001 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d N$T |d OCLCQ |d EBLCP |d YDXCP |d IDEBK |d E7B |d OCLCQ |d IUL |d COO |d MHW |d OCLCQ |d DEBSZ |d NLGGC |d OCLCQ |d AGLDB |d OCLCF |d OCLCQ |d VTS |d YOU |d STF |d DKC |d OCLCQ |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d YDX |d OCLCO |d OCLCL | ||
019 | |a 541901655 | ||
020 | |a 9780191574108 |q (electronic bk.) | ||
020 | |a 0191574104 |q (electronic bk.) | ||
020 | |z 9780198570622 |q (hardback) | ||
020 | |z 0198570627 |q (hardback) | ||
020 | |z 9780198570639 |q (pbk.) | ||
020 | |z 0198570635 |q (pbk.) | ||
024 | 8 | |a 9786612383342 | |
035 | |a (OCoLC)507435856 |z (OCoLC)541901655 | ||
050 | 4 | |a QC174.26.W28 |b D86 2010eb | |
072 | 7 | |a SCI |x 067000 |2 bisacsh | |
082 | 7 | |a 530.12/4 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Dunajski, Maciej. |0 http://id.loc.gov/authorities/names/n2009052671 | |
245 | 1 | 0 | |a Solitons, instantons, and twistors / |c Maciej Dunajski. |
260 | |a Oxford ; |a New York : |b Oxford University Press, |c 2010. | ||
300 | |a 1 online resource (xi, 359 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford mathematics | |
490 | 1 | |a Oxford graduate texts in mathematics ; |v 19 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. | |
520 | |a Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Solitons |x Mathematics. | |
650 | 0 | |a Instantons |x Mathematics. | |
650 | 0 | |a Wave-motion, Theory of. |0 http://id.loc.gov/authorities/subjects/sh85145785 | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Twistor theory. |0 http://id.loc.gov/authorities/subjects/sh85139052 | |
650 | 6 | |a Solitons |x Mathématiques. | |
650 | 6 | |a Instantons |x Mathématiques. | |
650 | 6 | |a Théorie du mouvement ondulatoire. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Théorie des torseurs. | |
650 | 7 | |a SCIENCE |x Waves & Wave Mechanics. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Solitons |x Mathematics |2 fast | |
650 | 7 | |a Twistor theory |2 fast | |
650 | 7 | |a Wave-motion, Theory of |2 fast | |
758 | |i has work: |a Solitons, instantons, and twistors (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGw8XqTTwjT9JT9D4rPHbq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Dunajski, Maciej. |t Solitons, instantons, and twistors. |d Oxford ; New York : Oxford University Press, 2010 |z 9780198570622 |w (DLC) 2009032333 |w (OCoLC)320199531 |
830 | 0 | |a Oxford mathematics. |0 http://id.loc.gov/authorities/names/no2006130077 | |
830 | 0 | |a Oxford graduate texts in mathematics ; |v 19. |0 http://id.loc.gov/authorities/names/n96121759 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 20450807 | ||
938 | |a Coutts Information Services |b COUT |n 11549939 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL7033792 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL472246 | ||
938 | |a EBSCOhost |b EBSC |n 302392 | ||
938 | |a YBP Library Services |b YANK |n 3162752 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn507435856 |
---|---|
_version_ | 1829094651611578368 |
adam_text | |
any_adam_object | |
author | Dunajski, Maciej |
author_GND | http://id.loc.gov/authorities/names/n2009052671 |
author_facet | Dunajski, Maciej |
author_role | |
author_sort | Dunajski, Maciej |
author_variant | m d md |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC174 |
callnumber-raw | QC174.26.W28 D86 2010eb |
callnumber-search | QC174.26.W28 D86 2010eb |
callnumber-sort | QC 3174.26 W28 D86 42010EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. |
ctrlnum | (OCoLC)507435856 |
dewey-full | 530.12/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12/4 |
dewey-search | 530.12/4 |
dewey-sort | 3530.12 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04482cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn507435856</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">090813s2010 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IUL</subfield><subfield code="d">COO</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">YOU</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">541901655</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191574108</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191574104</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198570622</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198570627</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780198570639</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0198570635</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612383342</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)507435856</subfield><subfield code="z">(OCoLC)541901655</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC174.26.W28</subfield><subfield code="b">D86 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">067000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.12/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dunajski, Maciej.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2009052671</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons, instantons, and twistors /</subfield><subfield code="c">Maciej Dunajski.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 359 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford mathematics</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">19</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solitons</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Instantons</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Wave-motion, Theory of.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85145785</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Twistor theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85139052</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solitons</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Instantons</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie du mouvement ondulatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des torseurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Waves & Wave Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Twistor theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wave-motion, Theory of</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Solitons, instantons, and twistors (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGw8XqTTwjT9JT9D4rPHbq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Dunajski, Maciej.</subfield><subfield code="t">Solitons, instantons, and twistors.</subfield><subfield code="d">Oxford ; New York : Oxford University Press, 2010</subfield><subfield code="z">9780198570622</subfield><subfield code="w">(DLC) 2009032333</subfield><subfield code="w">(OCoLC)320199531</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2006130077</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford graduate texts in mathematics ;</subfield><subfield code="v">19.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n96121759</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=302392</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20450807</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">11549939</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7033792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL472246</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">302392</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3162752</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn507435856 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:36:31Z |
institution | BVB |
isbn | 9780191574108 0191574104 |
language | English |
oclc_num | 507435856 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 359 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford mathematics. Oxford graduate texts in mathematics ; |
series2 | Oxford mathematics Oxford graduate texts in mathematics ; |
spelling | Dunajski, Maciej. http://id.loc.gov/authorities/names/n2009052671 Solitons, instantons, and twistors / Maciej Dunajski. Oxford ; New York : Oxford University Press, 2010. 1 online resource (xi, 359 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford mathematics Oxford graduate texts in mathematics ; 19 Includes bibliographical references and index. Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. Most nonlinear differential equations arising in natural sciences admit chaotic behaviour and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topologically different from vacuum. While integrable equations in lower space-timedimensions can be solved using the inverse scattering transform, the higher-dimensional examples of anti-self-dual Yan. Print version record. Solitons Mathematics. Instantons Mathematics. Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Twistor theory. http://id.loc.gov/authorities/subjects/sh85139052 Solitons Mathématiques. Instantons Mathématiques. Théorie du mouvement ondulatoire. Géométrie différentielle. Théorie des torseurs. SCIENCE Waves & Wave Mechanics. bisacsh Geometry, Differential fast Solitons Mathematics fast Twistor theory fast Wave-motion, Theory of fast has work: Solitons, instantons, and twistors (Text) https://id.oclc.org/worldcat/entity/E39PCGw8XqTTwjT9JT9D4rPHbq https://id.oclc.org/worldcat/ontology/hasWork Print version: Dunajski, Maciej. Solitons, instantons, and twistors. Oxford ; New York : Oxford University Press, 2010 9780198570622 (DLC) 2009032333 (OCoLC)320199531 Oxford mathematics. http://id.loc.gov/authorities/names/no2006130077 Oxford graduate texts in mathematics ; 19. http://id.loc.gov/authorities/names/n96121759 |
spellingShingle | Dunajski, Maciej Solitons, instantons, and twistors / Oxford mathematics. Oxford graduate texts in mathematics ; Integrability in classical mathematics -- Soliton equations and the inverse scattering transform -- Hamiltonian formalism and zero-curvature representation -- Lie symmetries and reductions -- Lagrangian formalism and field theory -- Gauge field theory -- Integrability of ASDYM and twistor theory -- Symmetry reductions and the integrable chiral model -- Gravitational instantons -- Anti-self-dual conformal structures -- Appendix A: Manifolds and topology -- Appendix B: Complex analysis -- Appendix C: Overdetermined PDEs. Solitons Mathematics. Instantons Mathematics. Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Twistor theory. http://id.loc.gov/authorities/subjects/sh85139052 Solitons Mathématiques. Instantons Mathématiques. Théorie du mouvement ondulatoire. Géométrie différentielle. Théorie des torseurs. SCIENCE Waves & Wave Mechanics. bisacsh Geometry, Differential fast Solitons Mathematics fast Twistor theory fast Wave-motion, Theory of fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85145785 http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85139052 |
title | Solitons, instantons, and twistors / |
title_auth | Solitons, instantons, and twistors / |
title_exact_search | Solitons, instantons, and twistors / |
title_full | Solitons, instantons, and twistors / Maciej Dunajski. |
title_fullStr | Solitons, instantons, and twistors / Maciej Dunajski. |
title_full_unstemmed | Solitons, instantons, and twistors / Maciej Dunajski. |
title_short | Solitons, instantons, and twistors / |
title_sort | solitons instantons and twistors |
topic | Solitons Mathematics. Instantons Mathematics. Wave-motion, Theory of. http://id.loc.gov/authorities/subjects/sh85145785 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Twistor theory. http://id.loc.gov/authorities/subjects/sh85139052 Solitons Mathématiques. Instantons Mathématiques. Théorie du mouvement ondulatoire. Géométrie différentielle. Théorie des torseurs. SCIENCE Waves & Wave Mechanics. bisacsh Geometry, Differential fast Solitons Mathematics fast Twistor theory fast Wave-motion, Theory of fast |
topic_facet | Solitons Mathematics. Instantons Mathematics. Wave-motion, Theory of. Geometry, Differential. Twistor theory. Solitons Mathématiques. Instantons Mathématiques. Théorie du mouvement ondulatoire. Géométrie différentielle. Théorie des torseurs. SCIENCE Waves & Wave Mechanics. Geometry, Differential Solitons Mathematics Twistor theory Wave-motion, Theory of |
work_keys_str_mv | AT dunajskimaciej solitonsinstantonsandtwistors |