Modules over discrete valuation domains /:
This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exerc...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
De Gruyter,
©2008.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
43. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra. |
Beschreibung: | 1 online resource (ix, 357 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110205787 3110205785 1282196545 9781282196544 9786612196546 6612196548 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn471132559 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 080402s2008 gw ob 001 0 eng d | ||
040 | |a QE2 |b eng |e pn |c QE2 |d OCLCQ |d N$T |d IDEBK |d E7B |d OCLCQ |d MERUC |d OCLCQ |d OCLCF |d DKDLA |d OCLCQ |d OCLCO |d YDXCP |d EBLCP |d MHW |d DEBBG |d DEBSZ |d OCLCQ |d COO |d OCLCQ |d COCUF |d UIU |d AGLDB |d MOR |d PIFPO |d ZCU |d OCLCQ |d OCLCO |d DEGRU |d GBVCP |d GWDNB |d U3W |d OCLCQ |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCO |d S9I |d TKN |d OCLCQ |d AU@ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d CN6UV |d VLY |d AJS |d AAA |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
015 | |a 08,A10,0854 |2 dnb | ||
016 | 7 | |a 1119937973 |2 DE-101 | |
019 | |a 301577852 |a 476197233 |a 646769628 |a 845454808 |a 961486576 |a 962567588 |a 979582012 |a 992917920 |a 1058084061 |a 1161999190 |a 1191237421 | ||
020 | |a 9783110205787 |q (electronic bk.) | ||
020 | |a 3110205785 |q (electronic bk.) | ||
020 | |z 3110200538 | ||
020 | |z 9783110200539 | ||
020 | |a 1282196545 | ||
020 | |a 9781282196544 | ||
020 | |a 9786612196546 | ||
020 | |a 6612196548 | ||
024 | 7 | |a 10.1515/9783110205787 |2 doi | |
035 | |a (OCoLC)471132559 |z (OCoLC)301577852 |z (OCoLC)476197233 |z (OCoLC)646769628 |z (OCoLC)845454808 |z (OCoLC)961486576 |z (OCoLC)962567588 |z (OCoLC)979582012 |z (OCoLC)992917920 |z (OCoLC)1058084061 |z (OCoLC)1161999190 |z (OCoLC)1191237421 | ||
050 | 4 | |a QA247.3 |b .K79 2008eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.42 |2 22 | |
084 | |a SK 230 |2 rvk | ||
084 | |a 510 |2 sdnb | ||
049 | |a MAIN | ||
100 | 1 | |a Krylov, Piotr A. |0 http://id.loc.gov/authorities/names/n2003011657 | |
245 | 1 | 0 | |a Modules over discrete valuation domains / |c by Piotr A. Krylov and Askar A. Tuganbaev. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2008. | ||
300 | |a 1 online resource (ix, 357 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |b PDF |2 rda | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v 43 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter. | |
520 | |a This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra. | ||
588 | 0 | |a Print version record. | |
546 | |a In English. | ||
650 | 0 | |a Commutative algebra. |0 http://id.loc.gov/authorities/subjects/sh85029267 | |
650 | 0 | |a Modules (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85086470 | |
650 | 6 | |a Algèbre commutative. | |
650 | 6 | |a Modules (Algèbre) | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Commutative algebra |2 fast | |
650 | 7 | |a Modules (Algebra) |2 fast | |
650 | 7 | |a Diskreter Bewertungsring |2 gnd |0 http://d-nb.info/gnd/4483625-9 | |
650 | 7 | |a Modultheorie |2 gnd |0 http://d-nb.info/gnd/4170336-4 | |
653 | |a Algebra: Ring. | ||
653 | |a Discrete Valuation Domain. | ||
653 | |a Module Theory. | ||
700 | 1 | |a Tuganbaev, Askar A. |0 http://id.loc.gov/authorities/names/n98057575 | |
758 | |i has work: |a Modules over discrete valuation domains (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGHc4bMyG9WjWcfyxjYfD3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Krylov, Piotr A. |t Modules over discrete valuation domains. |d Berlin ; New York : De Gruyter, ©2008 |z 9783110200539 |z 3110200538 |w (OCoLC)217279319 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 43. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=247538 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25308063 | ||
938 | |a De Gruyter |b DEGR |n 9783110205787 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL364705 | ||
938 | |a ebrary |b EBRY |n ebr10256409 | ||
938 | |a EBSCOhost |b EBSC |n 247538 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 219654 | ||
938 | |a YBP Library Services |b YANK |n 2896761 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn471132559 |
---|---|
_version_ | 1816881701269274624 |
adam_text | |
any_adam_object | |
author | Krylov, Piotr A. |
author2 | Tuganbaev, Askar A. |
author2_role | |
author2_variant | a a t aa aat |
author_GND | http://id.loc.gov/authorities/names/n2003011657 http://id.loc.gov/authorities/names/n98057575 |
author_facet | Krylov, Piotr A. Tuganbaev, Askar A. |
author_role | |
author_sort | Krylov, Piotr A. |
author_variant | p a k pa pak |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247.3 .K79 2008eb |
callnumber-search | QA247.3 .K79 2008eb |
callnumber-sort | QA 3247.3 K79 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 |
collection | ZDB-4-EBA |
contents | Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter. |
ctrlnum | (OCoLC)471132559 |
dewey-full | 512/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.42 |
dewey-search | 512/.42 |
dewey-sort | 3512 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04698cam a2200805Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn471132559</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">080402s2008 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">QE2</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">QE2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DKDLA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFPO</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEGRU</subfield><subfield code="d">GBVCP</subfield><subfield code="d">GWDNB</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CN6UV</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">AAA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A10,0854</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1119937973</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">301577852</subfield><subfield code="a">476197233</subfield><subfield code="a">646769628</subfield><subfield code="a">845454808</subfield><subfield code="a">961486576</subfield><subfield code="a">962567588</subfield><subfield code="a">979582012</subfield><subfield code="a">992917920</subfield><subfield code="a">1058084061</subfield><subfield code="a">1161999190</subfield><subfield code="a">1191237421</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110205787</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110205785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110200538</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110200539</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282196545</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282196544</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612196546</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612196548</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110205787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)471132559</subfield><subfield code="z">(OCoLC)301577852</subfield><subfield code="z">(OCoLC)476197233</subfield><subfield code="z">(OCoLC)646769628</subfield><subfield code="z">(OCoLC)845454808</subfield><subfield code="z">(OCoLC)961486576</subfield><subfield code="z">(OCoLC)962567588</subfield><subfield code="z">(OCoLC)979582012</subfield><subfield code="z">(OCoLC)992917920</subfield><subfield code="z">(OCoLC)1058084061</subfield><subfield code="z">(OCoLC)1161999190</subfield><subfield code="z">(OCoLC)1191237421</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA247.3</subfield><subfield code="b">.K79 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krylov, Piotr A.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2003011657</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modules over discrete valuation domains /</subfield><subfield code="c">by Piotr A. Krylov and Askar A. Tuganbaev.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 357 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="b">PDF</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">43</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Commutative algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029267</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Modules (Algebra)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85086470</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre commutative.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Modules (Algèbre)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modules (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4483625-9</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4170336-4</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebra: Ring.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Discrete Valuation Domain.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Module Theory.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar A.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n98057575</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Modules over discrete valuation domains (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGHc4bMyG9WjWcfyxjYfD3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krylov, Piotr A.</subfield><subfield code="t">Modules over discrete valuation domains.</subfield><subfield code="d">Berlin ; New York : De Gruyter, ©2008</subfield><subfield code="z">9783110200539</subfield><subfield code="z">3110200538</subfield><subfield code="w">(OCoLC)217279319</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">43.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=247538</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25308063</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110205787</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL364705</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10256409</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">247538</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">219654</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2896761</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn471132559 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:54Z |
institution | BVB |
isbn | 9783110205787 3110205785 1282196545 9781282196544 9786612196546 6612196548 |
language | English |
oclc_num | 471132559 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 357 pages) |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Krylov, Piotr A. http://id.loc.gov/authorities/names/n2003011657 Modules over discrete valuation domains / by Piotr A. Krylov and Askar A. Tuganbaev. Berlin ; New York : De Gruyter, ©2008. 1 online resource (ix, 357 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier text file PDF rda De Gruyter expositions in mathematics ; 43 Includes bibliographical references and index. Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter. This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra. Print version record. In English. Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Modules (Algebra) http://id.loc.gov/authorities/subjects/sh85086470 Algèbre commutative. Modules (Algèbre) MATHEMATICS Algebra Intermediate. bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring gnd http://d-nb.info/gnd/4483625-9 Modultheorie gnd http://d-nb.info/gnd/4170336-4 Algebra: Ring. Discrete Valuation Domain. Module Theory. Tuganbaev, Askar A. http://id.loc.gov/authorities/names/n98057575 has work: Modules over discrete valuation domains (Text) https://id.oclc.org/worldcat/entity/E39PCGHc4bMyG9WjWcfyxjYfD3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Krylov, Piotr A. Modules over discrete valuation domains. Berlin ; New York : De Gruyter, ©2008 9783110200539 3110200538 (OCoLC)217279319 De Gruyter expositions in mathematics ; 43. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=247538 Volltext |
spellingShingle | Krylov, Piotr A. Modules over discrete valuation domains / De Gruyter expositions in mathematics ; Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter. Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Modules (Algebra) http://id.loc.gov/authorities/subjects/sh85086470 Algèbre commutative. Modules (Algèbre) MATHEMATICS Algebra Intermediate. bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring gnd http://d-nb.info/gnd/4483625-9 Modultheorie gnd http://d-nb.info/gnd/4170336-4 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85029267 http://id.loc.gov/authorities/subjects/sh85086470 http://d-nb.info/gnd/4483625-9 http://d-nb.info/gnd/4170336-4 |
title | Modules over discrete valuation domains / |
title_auth | Modules over discrete valuation domains / |
title_exact_search | Modules over discrete valuation domains / |
title_full | Modules over discrete valuation domains / by Piotr A. Krylov and Askar A. Tuganbaev. |
title_fullStr | Modules over discrete valuation domains / by Piotr A. Krylov and Askar A. Tuganbaev. |
title_full_unstemmed | Modules over discrete valuation domains / by Piotr A. Krylov and Askar A. Tuganbaev. |
title_short | Modules over discrete valuation domains / |
title_sort | modules over discrete valuation domains |
topic | Commutative algebra. http://id.loc.gov/authorities/subjects/sh85029267 Modules (Algebra) http://id.loc.gov/authorities/subjects/sh85086470 Algèbre commutative. Modules (Algèbre) MATHEMATICS Algebra Intermediate. bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring gnd http://d-nb.info/gnd/4483625-9 Modultheorie gnd http://d-nb.info/gnd/4170336-4 |
topic_facet | Commutative algebra. Modules (Algebra) Algèbre commutative. Modules (Algèbre) MATHEMATICS Algebra Intermediate. Commutative algebra Diskreter Bewertungsring Modultheorie |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=247538 |
work_keys_str_mv | AT krylovpiotra modulesoverdiscretevaluationdomains AT tuganbaevaskara modulesoverdiscretevaluationdomains |