Stochastic models, estimation and control.: Volume 1 /
Stochastic Models: Estimation and Control: v. 1.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1979.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 141a. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Stochastic Models: Estimation and Control: v. 1. |
Beschreibung: | 1 online resource (xix, 423 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780080956503 0080956505 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn466443953 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 091116s1979 nyua ob 001 0 eng d | ||
040 | |a MERUC |b eng |e pn |c MERUC |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OCLCQ |d OCLCF |d OCLCQ |d MERUC |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCQ |d STF |d M8D |d OCLCQ |d AJS |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9780080956503 |q (electronic bk.) | ||
020 | |a 0080956505 |q (electronic bk.) | ||
035 | |a (OCoLC)466443953 | ||
050 | 4 | |a QA402 |b .M37eb vol. 1 | |
072 | 7 | |a SCI |x 064000 |2 bisacsh | |
072 | 7 | |a TEC |x 029000 |2 bisacsh | |
082 | 7 | |a 003 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Maybeck, Peter S. |0 http://id.loc.gov/authorities/names/n78061629 | |
245 | 1 | 0 | |a Stochastic models, estimation and control. |n Volume 1 / |c Peter S. Maybeck. |
260 | |a New York : |b Academic Press, |c 1979. | ||
300 | |a 1 online resource (xix, 423 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 141a | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Stochastic models, estimation, and control; Copyright Page; Contents; Preface; Contents of Volume 2; Notation; Chapter 1. Introduction; 1.1 Why Stochastic Models, Estimation, and Control?; 1.2 Overview of the Text; 1.3 The Kalman Filter: An Introduction to Concepts; 1.4 Basic Assumptions; 1.5 A Simple Example; 1.6 A Preview; General References; Appendix and Problems; References; Chapter 2. Deterministic system models; 2.1 Introduction; 2.2 Continuous-Time Dynamic Models; 2.3 Solutions to State Differential Equations; 2.4 Discrete-Time Measurements | |
505 | 8 | |a 2.5 Controllability and Observability2.6 Summary; References; Problems; Chapter 3. Probability theory and static models; 3.1 Introduction; 3.2 Probability and Random Variables; 3.3 Probability Distributions and Densities; 3.4 Conditional Probability and Densities; 3.5 Functions of Random Variables; 3.6 Expectation and Moments of Random Variables; 3.7 Conditional Expectations; 3.8 Characteristic Functions; 3.9 Gaussian Random Vectors; 3.10 Linear Operations on Gaussian Random Variables; 3.11 Estimation with Static Linear Gaussian System Models; 3.12 Summary; References; Problems | |
505 | 8 | |a Chapter 4. Stochastic processes and linear dynamic system models4.1 Introduction; 4.2 Stochastic Processes; 4.3 Stationary Stochastic Processes and Power Spectral Density; 4.4 System Modeling: Objectives and Directions; 4.5 Foundations: White Gaussian Noise and Brownian Motion; 4.6 Stochastic Integrals; 4.7 Stochastic Differentials; 4.8 Linear Stochastic Differential Equations; 4.9 Linear Stochastic Difference Equations; 4.10 The Overall System Model; 4.11 Shaping Filters and State Augmentation; 4.12 Power Spectrum Concepts and Shaping Filters; 4.13 Generating Practical System Models | |
505 | 8 | |a 4.14 SummaryReferences; Problems; Chapter 5. Optimal filtering with linear system models; 5.1 Introduction; 5.2 Problem Formulation; 5.3 The Discrete-Time (Sampled Data) Optimal Estimator: The Kalman Filter; 5.4 Statistics of Processes within the Filter Structure; 5.5 Other Criteria of Optimality; 5.6 Covariance Measurement Update Computations; 5.7 Inverse Covariance Form; 5.8 Stability; 5.9 Correlation of Dynamic Driving Noise and Measurement Noise; 5.10 Time-Correlated Measurement Noise: Perfect Measurements; 5.11 Continuous-Time Filter; 5.12 Wiener Filtering and Frequency Domain Techniques | |
505 | 8 | |a 5.13 SummaryReferences; Problems; Chapter 6. Design and performance analysis of Kalman filters; 6.1 Introduction; 6.2 The Requisite of Engineering Judgment; 6.3 Application of Kalman Filtering to Inertial Navigation Systems; 6.4 INS Aided by Position Data: A Simple Example; 6.5 Doppler-Aided INS; 6.6 INS Calibration and Alignment Using Direct Kalman Filter; 6.7 Generating Alternative Designs; 6.8 Performance (Sensitivity) Analysis; 6.9 Systematic Design Procedure; 6.10 INS Aided by Navigation Satellites; 6.11 Practical Aspects of Implementation; 6.12 Summary; References; Problems | |
520 | |a Stochastic Models: Estimation and Control: v. 1. | ||
650 | 0 | |a System analysis. | |
650 | 0 | |a Control theory. |0 http://id.loc.gov/authorities/subjects/sh85031658 | |
650 | 0 | |a Estimation theory. |0 http://id.loc.gov/authorities/subjects/sh85044957 | |
650 | 2 | |a Systems Analysis |0 https://id.nlm.nih.gov/mesh/D013597 | |
650 | 6 | |a Analyse de systèmes. | |
650 | 6 | |a Théorie de la commande. | |
650 | 6 | |a Théorie de l'estimation. | |
650 | 7 | |a systems analysis. |2 aat | |
650 | 7 | |a SCIENCE |x System Theory. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Operations Research. |2 bisacsh | |
650 | 7 | |a Control theory |2 fast | |
650 | 7 | |a Estimation theory |2 fast | |
650 | 7 | |a System analysis |2 fast | |
758 | |i has work: |a Volume 1 Stochastic models, estimation and control (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFHPfgH6pk4pCKXBPMkGXm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Maybeck, Peter S. |t Stochastic Models, Part A. |d New York : Academic Press, 1979 |z 9780124807013 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 141a. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297125 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL453079 | ||
938 | |a EBSCOhost |b EBSC |n 297125 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn466443953 |
---|---|
_version_ | 1816881701083676672 |
adam_text | |
any_adam_object | |
author | Maybeck, Peter S. |
author_GND | http://id.loc.gov/authorities/names/n78061629 |
author_facet | Maybeck, Peter S. |
author_role | |
author_sort | Maybeck, Peter S. |
author_variant | p s m ps psm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402 .M37eb vol. 1 |
callnumber-search | QA402 .M37eb vol. 1 |
callnumber-sort | QA 3402 M37 EB VOL 11 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Stochastic models, estimation, and control; Copyright Page; Contents; Preface; Contents of Volume 2; Notation; Chapter 1. Introduction; 1.1 Why Stochastic Models, Estimation, and Control?; 1.2 Overview of the Text; 1.3 The Kalman Filter: An Introduction to Concepts; 1.4 Basic Assumptions; 1.5 A Simple Example; 1.6 A Preview; General References; Appendix and Problems; References; Chapter 2. Deterministic system models; 2.1 Introduction; 2.2 Continuous-Time Dynamic Models; 2.3 Solutions to State Differential Equations; 2.4 Discrete-Time Measurements 2.5 Controllability and Observability2.6 Summary; References; Problems; Chapter 3. Probability theory and static models; 3.1 Introduction; 3.2 Probability and Random Variables; 3.3 Probability Distributions and Densities; 3.4 Conditional Probability and Densities; 3.5 Functions of Random Variables; 3.6 Expectation and Moments of Random Variables; 3.7 Conditional Expectations; 3.8 Characteristic Functions; 3.9 Gaussian Random Vectors; 3.10 Linear Operations on Gaussian Random Variables; 3.11 Estimation with Static Linear Gaussian System Models; 3.12 Summary; References; Problems Chapter 4. Stochastic processes and linear dynamic system models4.1 Introduction; 4.2 Stochastic Processes; 4.3 Stationary Stochastic Processes and Power Spectral Density; 4.4 System Modeling: Objectives and Directions; 4.5 Foundations: White Gaussian Noise and Brownian Motion; 4.6 Stochastic Integrals; 4.7 Stochastic Differentials; 4.8 Linear Stochastic Differential Equations; 4.9 Linear Stochastic Difference Equations; 4.10 The Overall System Model; 4.11 Shaping Filters and State Augmentation; 4.12 Power Spectrum Concepts and Shaping Filters; 4.13 Generating Practical System Models 4.14 SummaryReferences; Problems; Chapter 5. Optimal filtering with linear system models; 5.1 Introduction; 5.2 Problem Formulation; 5.3 The Discrete-Time (Sampled Data) Optimal Estimator: The Kalman Filter; 5.4 Statistics of Processes within the Filter Structure; 5.5 Other Criteria of Optimality; 5.6 Covariance Measurement Update Computations; 5.7 Inverse Covariance Form; 5.8 Stability; 5.9 Correlation of Dynamic Driving Noise and Measurement Noise; 5.10 Time-Correlated Measurement Noise: Perfect Measurements; 5.11 Continuous-Time Filter; 5.12 Wiener Filtering and Frequency Domain Techniques 5.13 SummaryReferences; Problems; Chapter 6. Design and performance analysis of Kalman filters; 6.1 Introduction; 6.2 The Requisite of Engineering Judgment; 6.3 Application of Kalman Filtering to Inertial Navigation Systems; 6.4 INS Aided by Position Data: A Simple Example; 6.5 Doppler-Aided INS; 6.6 INS Calibration and Alignment Using Direct Kalman Filter; 6.7 Generating Alternative Designs; 6.8 Performance (Sensitivity) Analysis; 6.9 Systematic Design Procedure; 6.10 INS Aided by Navigation Satellites; 6.11 Practical Aspects of Implementation; 6.12 Summary; References; Problems |
ctrlnum | (OCoLC)466443953 |
dewey-full | 003 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003 |
dewey-search | 003 |
dewey-sort | 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05649cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn466443953</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">091116s1979 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MERUC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MERUC</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956503</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956505</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)466443953</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA402</subfield><subfield code="b">.M37eb vol. 1</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">064000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">003</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maybeck, Peter S.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78061629</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic models, estimation and control.</subfield><subfield code="n">Volume 1 /</subfield><subfield code="c">Peter S. Maybeck.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1979.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 423 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 141a</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Stochastic models, estimation, and control; Copyright Page; Contents; Preface; Contents of Volume 2; Notation; Chapter 1. Introduction; 1.1 Why Stochastic Models, Estimation, and Control?; 1.2 Overview of the Text; 1.3 The Kalman Filter: An Introduction to Concepts; 1.4 Basic Assumptions; 1.5 A Simple Example; 1.6 A Preview; General References; Appendix and Problems; References; Chapter 2. Deterministic system models; 2.1 Introduction; 2.2 Continuous-Time Dynamic Models; 2.3 Solutions to State Differential Equations; 2.4 Discrete-Time Measurements</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Controllability and Observability2.6 Summary; References; Problems; Chapter 3. Probability theory and static models; 3.1 Introduction; 3.2 Probability and Random Variables; 3.3 Probability Distributions and Densities; 3.4 Conditional Probability and Densities; 3.5 Functions of Random Variables; 3.6 Expectation and Moments of Random Variables; 3.7 Conditional Expectations; 3.8 Characteristic Functions; 3.9 Gaussian Random Vectors; 3.10 Linear Operations on Gaussian Random Variables; 3.11 Estimation with Static Linear Gaussian System Models; 3.12 Summary; References; Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4. Stochastic processes and linear dynamic system models4.1 Introduction; 4.2 Stochastic Processes; 4.3 Stationary Stochastic Processes and Power Spectral Density; 4.4 System Modeling: Objectives and Directions; 4.5 Foundations: White Gaussian Noise and Brownian Motion; 4.6 Stochastic Integrals; 4.7 Stochastic Differentials; 4.8 Linear Stochastic Differential Equations; 4.9 Linear Stochastic Difference Equations; 4.10 The Overall System Model; 4.11 Shaping Filters and State Augmentation; 4.12 Power Spectrum Concepts and Shaping Filters; 4.13 Generating Practical System Models</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.14 SummaryReferences; Problems; Chapter 5. Optimal filtering with linear system models; 5.1 Introduction; 5.2 Problem Formulation; 5.3 The Discrete-Time (Sampled Data) Optimal Estimator: The Kalman Filter; 5.4 Statistics of Processes within the Filter Structure; 5.5 Other Criteria of Optimality; 5.6 Covariance Measurement Update Computations; 5.7 Inverse Covariance Form; 5.8 Stability; 5.9 Correlation of Dynamic Driving Noise and Measurement Noise; 5.10 Time-Correlated Measurement Noise: Perfect Measurements; 5.11 Continuous-Time Filter; 5.12 Wiener Filtering and Frequency Domain Techniques</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.13 SummaryReferences; Problems; Chapter 6. Design and performance analysis of Kalman filters; 6.1 Introduction; 6.2 The Requisite of Engineering Judgment; 6.3 Application of Kalman Filtering to Inertial Navigation Systems; 6.4 INS Aided by Position Data: A Simple Example; 6.5 Doppler-Aided INS; 6.6 INS Calibration and Alignment Using Direct Kalman Filter; 6.7 Generating Alternative Designs; 6.8 Performance (Sensitivity) Analysis; 6.9 Systematic Design Procedure; 6.10 INS Aided by Navigation Satellites; 6.11 Practical Aspects of Implementation; 6.12 Summary; References; Problems</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Stochastic Models: Estimation and Control: v. 1.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">System analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Control theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031658</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Estimation theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85044957</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Systems Analysis</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D013597</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse de systèmes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la commande.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de l'estimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">systems analysis.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">System Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Operations Research.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Control theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estimation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">System analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Volume 1 Stochastic models, estimation and control (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFHPfgH6pk4pCKXBPMkGXm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Maybeck, Peter S.</subfield><subfield code="t">Stochastic Models, Part A.</subfield><subfield code="d">New York : Academic Press, 1979</subfield><subfield code="z">9780124807013</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 141a.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297125</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL453079</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297125</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn466443953 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:54Z |
institution | BVB |
isbn | 9780080956503 0080956505 |
language | English |
oclc_num | 466443953 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 423 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Maybeck, Peter S. http://id.loc.gov/authorities/names/n78061629 Stochastic models, estimation and control. Volume 1 / Peter S. Maybeck. New York : Academic Press, 1979. 1 online resource (xix, 423 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 141a Includes bibliographical references and index. Print version record. Front Cover; Stochastic models, estimation, and control; Copyright Page; Contents; Preface; Contents of Volume 2; Notation; Chapter 1. Introduction; 1.1 Why Stochastic Models, Estimation, and Control?; 1.2 Overview of the Text; 1.3 The Kalman Filter: An Introduction to Concepts; 1.4 Basic Assumptions; 1.5 A Simple Example; 1.6 A Preview; General References; Appendix and Problems; References; Chapter 2. Deterministic system models; 2.1 Introduction; 2.2 Continuous-Time Dynamic Models; 2.3 Solutions to State Differential Equations; 2.4 Discrete-Time Measurements 2.5 Controllability and Observability2.6 Summary; References; Problems; Chapter 3. Probability theory and static models; 3.1 Introduction; 3.2 Probability and Random Variables; 3.3 Probability Distributions and Densities; 3.4 Conditional Probability and Densities; 3.5 Functions of Random Variables; 3.6 Expectation and Moments of Random Variables; 3.7 Conditional Expectations; 3.8 Characteristic Functions; 3.9 Gaussian Random Vectors; 3.10 Linear Operations on Gaussian Random Variables; 3.11 Estimation with Static Linear Gaussian System Models; 3.12 Summary; References; Problems Chapter 4. Stochastic processes and linear dynamic system models4.1 Introduction; 4.2 Stochastic Processes; 4.3 Stationary Stochastic Processes and Power Spectral Density; 4.4 System Modeling: Objectives and Directions; 4.5 Foundations: White Gaussian Noise and Brownian Motion; 4.6 Stochastic Integrals; 4.7 Stochastic Differentials; 4.8 Linear Stochastic Differential Equations; 4.9 Linear Stochastic Difference Equations; 4.10 The Overall System Model; 4.11 Shaping Filters and State Augmentation; 4.12 Power Spectrum Concepts and Shaping Filters; 4.13 Generating Practical System Models 4.14 SummaryReferences; Problems; Chapter 5. Optimal filtering with linear system models; 5.1 Introduction; 5.2 Problem Formulation; 5.3 The Discrete-Time (Sampled Data) Optimal Estimator: The Kalman Filter; 5.4 Statistics of Processes within the Filter Structure; 5.5 Other Criteria of Optimality; 5.6 Covariance Measurement Update Computations; 5.7 Inverse Covariance Form; 5.8 Stability; 5.9 Correlation of Dynamic Driving Noise and Measurement Noise; 5.10 Time-Correlated Measurement Noise: Perfect Measurements; 5.11 Continuous-Time Filter; 5.12 Wiener Filtering and Frequency Domain Techniques 5.13 SummaryReferences; Problems; Chapter 6. Design and performance analysis of Kalman filters; 6.1 Introduction; 6.2 The Requisite of Engineering Judgment; 6.3 Application of Kalman Filtering to Inertial Navigation Systems; 6.4 INS Aided by Position Data: A Simple Example; 6.5 Doppler-Aided INS; 6.6 INS Calibration and Alignment Using Direct Kalman Filter; 6.7 Generating Alternative Designs; 6.8 Performance (Sensitivity) Analysis; 6.9 Systematic Design Procedure; 6.10 INS Aided by Navigation Satellites; 6.11 Practical Aspects of Implementation; 6.12 Summary; References; Problems Stochastic Models: Estimation and Control: v. 1. System analysis. Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Systems Analysis https://id.nlm.nih.gov/mesh/D013597 Analyse de systèmes. Théorie de la commande. Théorie de l'estimation. systems analysis. aat SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Control theory fast Estimation theory fast System analysis fast has work: Volume 1 Stochastic models, estimation and control (Text) https://id.oclc.org/worldcat/entity/E39PCFHPfgH6pk4pCKXBPMkGXm https://id.oclc.org/worldcat/ontology/hasWork Print version: Maybeck, Peter S. Stochastic Models, Part A. New York : Academic Press, 1979 9780124807013 Mathematics in science and engineering ; v. 141a. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297125 Volltext |
spellingShingle | Maybeck, Peter S. Stochastic models, estimation and control. Mathematics in science and engineering ; Front Cover; Stochastic models, estimation, and control; Copyright Page; Contents; Preface; Contents of Volume 2; Notation; Chapter 1. Introduction; 1.1 Why Stochastic Models, Estimation, and Control?; 1.2 Overview of the Text; 1.3 The Kalman Filter: An Introduction to Concepts; 1.4 Basic Assumptions; 1.5 A Simple Example; 1.6 A Preview; General References; Appendix and Problems; References; Chapter 2. Deterministic system models; 2.1 Introduction; 2.2 Continuous-Time Dynamic Models; 2.3 Solutions to State Differential Equations; 2.4 Discrete-Time Measurements 2.5 Controllability and Observability2.6 Summary; References; Problems; Chapter 3. Probability theory and static models; 3.1 Introduction; 3.2 Probability and Random Variables; 3.3 Probability Distributions and Densities; 3.4 Conditional Probability and Densities; 3.5 Functions of Random Variables; 3.6 Expectation and Moments of Random Variables; 3.7 Conditional Expectations; 3.8 Characteristic Functions; 3.9 Gaussian Random Vectors; 3.10 Linear Operations on Gaussian Random Variables; 3.11 Estimation with Static Linear Gaussian System Models; 3.12 Summary; References; Problems Chapter 4. Stochastic processes and linear dynamic system models4.1 Introduction; 4.2 Stochastic Processes; 4.3 Stationary Stochastic Processes and Power Spectral Density; 4.4 System Modeling: Objectives and Directions; 4.5 Foundations: White Gaussian Noise and Brownian Motion; 4.6 Stochastic Integrals; 4.7 Stochastic Differentials; 4.8 Linear Stochastic Differential Equations; 4.9 Linear Stochastic Difference Equations; 4.10 The Overall System Model; 4.11 Shaping Filters and State Augmentation; 4.12 Power Spectrum Concepts and Shaping Filters; 4.13 Generating Practical System Models 4.14 SummaryReferences; Problems; Chapter 5. Optimal filtering with linear system models; 5.1 Introduction; 5.2 Problem Formulation; 5.3 The Discrete-Time (Sampled Data) Optimal Estimator: The Kalman Filter; 5.4 Statistics of Processes within the Filter Structure; 5.5 Other Criteria of Optimality; 5.6 Covariance Measurement Update Computations; 5.7 Inverse Covariance Form; 5.8 Stability; 5.9 Correlation of Dynamic Driving Noise and Measurement Noise; 5.10 Time-Correlated Measurement Noise: Perfect Measurements; 5.11 Continuous-Time Filter; 5.12 Wiener Filtering and Frequency Domain Techniques 5.13 SummaryReferences; Problems; Chapter 6. Design and performance analysis of Kalman filters; 6.1 Introduction; 6.2 The Requisite of Engineering Judgment; 6.3 Application of Kalman Filtering to Inertial Navigation Systems; 6.4 INS Aided by Position Data: A Simple Example; 6.5 Doppler-Aided INS; 6.6 INS Calibration and Alignment Using Direct Kalman Filter; 6.7 Generating Alternative Designs; 6.8 Performance (Sensitivity) Analysis; 6.9 Systematic Design Procedure; 6.10 INS Aided by Navigation Satellites; 6.11 Practical Aspects of Implementation; 6.12 Summary; References; Problems System analysis. Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Systems Analysis https://id.nlm.nih.gov/mesh/D013597 Analyse de systèmes. Théorie de la commande. Théorie de l'estimation. systems analysis. aat SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Control theory fast Estimation theory fast System analysis fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031658 http://id.loc.gov/authorities/subjects/sh85044957 https://id.nlm.nih.gov/mesh/D013597 |
title | Stochastic models, estimation and control. |
title_auth | Stochastic models, estimation and control. |
title_exact_search | Stochastic models, estimation and control. |
title_full | Stochastic models, estimation and control. Volume 1 / Peter S. Maybeck. |
title_fullStr | Stochastic models, estimation and control. Volume 1 / Peter S. Maybeck. |
title_full_unstemmed | Stochastic models, estimation and control. Volume 1 / Peter S. Maybeck. |
title_short | Stochastic models, estimation and control. |
title_sort | stochastic models estimation and control |
topic | System analysis. Control theory. http://id.loc.gov/authorities/subjects/sh85031658 Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Systems Analysis https://id.nlm.nih.gov/mesh/D013597 Analyse de systèmes. Théorie de la commande. Théorie de l'estimation. systems analysis. aat SCIENCE System Theory. bisacsh TECHNOLOGY & ENGINEERING Operations Research. bisacsh Control theory fast Estimation theory fast System analysis fast |
topic_facet | System analysis. Control theory. Estimation theory. Systems Analysis Analyse de systèmes. Théorie de la commande. Théorie de l'estimation. systems analysis. SCIENCE System Theory. TECHNOLOGY & ENGINEERING Operations Research. Control theory Estimation theory System analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297125 |
work_keys_str_mv | AT maybeckpeters stochasticmodelsestimationandcontrolvolume1 |