Lectures on resolution of singularities /:
Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, Janos Kollar provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. K...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
2007.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 166. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, Janos Kollar provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollar goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written. |
Beschreibung: | 1 online resource (vi, 208 pages) |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references (pages 197-202) and index. |
ISBN: | 9781400827800 1400827809 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn438732324 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090924s2007 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d EBLCP |d IDEBK |d E7B |d AZU |d OCLCQ |d MHW |d OCLCQ |d REDDC |d OCLCQ |d OCLCO |d OCLCQ |d DEBSZ |d JSTOR |d OCLCF |d YDXCP |d OCLCQ |d NLGGC |d MERUC |d OCLCQ |d COO |d AGLDB |d UIU |d AZK |d MOR |d OCLCE |d PIFAG |d JBG |d ZCU |d OTZ |d OCLCQ |d IOG |d U3W |d EZ9 |d VTS |d ICG |d AU@ |d OCLCQ |d LVT |d INT |d VT2 |d WYU |d OCLCQ |d STF |d DKC |d OCLCQ |d K6U |d OCLCQ |d VLB |d MM9 |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI | ||
019 | |a 519864148 |a 535937711 |a 647823071 |a 961557219 |a 989132180 |a 991996797 |a 994985055 |a 1018020755 |a 1037909196 |a 1052562193 |a 1058089681 | ||
020 | |a 9781400827800 |q (electronic bk.) | ||
020 | |a 1400827809 |q (electronic bk.) | ||
020 | |z 9780691129228 |q (acid-free paper) | ||
020 | |z 0691129223 |q (acid-free paper) | ||
020 | |z 9780691129235 |q (pbk. ; |q acid-free paper) | ||
020 | |z 0691129231 |q (pbk. ; |q acid-free paper) | ||
024 | 7 | |a 10.1515/9781400827800 |2 doi | |
035 | |a (OCoLC)438732324 |z (OCoLC)519864148 |z (OCoLC)535937711 |z (OCoLC)647823071 |z (OCoLC)961557219 |z (OCoLC)989132180 |z (OCoLC)991996797 |z (OCoLC)994985055 |z (OCoLC)1018020755 |z (OCoLC)1037909196 |z (OCoLC)1052562193 |z (OCoLC)1058089681 | ||
037 | |a 22573/cttts9n |b JSTOR | ||
042 | |a dlr | ||
050 | 4 | |a QA614.58 |b .K68 2007eb | |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
072 | 7 | |a MAT012010 |2 bisacsh | |
082 | 7 | |a 516.3/5 |2 22 | |
084 | |a SK 240 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Kollár, János. |0 http://id.loc.gov/authorities/names/nr89014031 | |
245 | 1 | 0 | |a Lectures on resolution of singularities / |c János Kollár. |
260 | |a Princeton : |b Princeton University Press, |c 2007. | ||
300 | |a 1 online resource (vi, 208 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 166 | |
504 | |a Includes bibliographical references (pages 197-202) and index. | ||
520 | |a Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, Janos Kollar provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollar goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Contents; Introduction; Chapter 1. Resolution for Curves; Chapter 2. Resolution for Surfaces; Chapter 3. Strong Resolution in Characteristic Zero; Bibliography; Index. | |
546 | |a In English. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2011. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2011 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
650 | 0 | |a Singularities (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85122871 | |
650 | 6 | |a Singularités (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a Singularities (Mathematics) |2 fast | |
650 | 7 | |a Algebraische Fläche |2 gnd |0 http://d-nb.info/gnd/4195660-6 | |
650 | 7 | |a Algebraische Kurve |2 gnd |0 http://d-nb.info/gnd/4001165-3 | |
650 | 7 | |a Auflösung von Singularitäten |2 gnd |0 http://d-nb.info/gnd/4181537-3 | |
653 | |a Adjunction formula. | ||
653 | |a Algebraic closure. | ||
653 | |a Algebraic geometry. | ||
653 | |a Algebraic space. | ||
653 | |a Algebraic surface. | ||
653 | |a Algebraic variety. | ||
653 | |a Approximation. | ||
653 | |a Asymptotic analysis. | ||
653 | |a Automorphism. | ||
653 | |a Bernhard Riemann. | ||
653 | |a Big O notation. | ||
653 | |a Birational geometry. | ||
653 | |a C0. | ||
653 | |a Canonical singularity. | ||
653 | |a Codimension. | ||
653 | |a Cohomology. | ||
653 | |a Commutative algebra. | ||
653 | |a Complex analysis. | ||
653 | |a Complex manifold. | ||
653 | |a Computability. | ||
653 | |a Continuous function. | ||
653 | |a Coordinate system. | ||
653 | |a Diagram (category theory). | ||
653 | |a Differential geometry of surfaces. | ||
653 | |a Dimension. | ||
653 | |a Divisor. | ||
653 | |a Du Val singularity. | ||
653 | |a Dual graph. | ||
653 | |a Embedding. | ||
653 | |a Equation. | ||
653 | |a Equivalence relation. | ||
653 | |a Euclidean algorithm. | ||
653 | |a Factorization. | ||
653 | |a Functor. | ||
653 | |a General position. | ||
653 | |a Generic point. | ||
653 | |a Geometric genus. | ||
653 | |a Geometry. | ||
653 | |a Hyperplane. | ||
653 | |a Hypersurface. | ||
653 | |a Integral domain. | ||
653 | |a Intersection (set theory). | ||
653 | |a Intersection number (graph theory). | ||
653 | |a Intersection theory. | ||
653 | |a Irreducible component. | ||
653 | |a Isolated singularity. | ||
653 | |a Laurent series. | ||
653 | |a Line bundle. | ||
653 | |a Linear space (geometry). | ||
653 | |a Linear subspace. | ||
653 | |a Mathematical induction. | ||
653 | |a Mathematics. | ||
653 | |a Maximal ideal. | ||
653 | |a Morphism. | ||
653 | |a Newton polygon. | ||
653 | |a Noetherian ring. | ||
653 | |a Noetherian. | ||
653 | |a Open problem. | ||
653 | |a Open set. | ||
653 | |a P-adic number. | ||
653 | |a Pairwise. | ||
653 | |a Parametric equation. | ||
653 | |a Partial derivative. | ||
653 | |a Plane curve. | ||
653 | |a Polynomial. | ||
653 | |a Power series. | ||
653 | |a Principal ideal. | ||
653 | |a Principalization (algebra). | ||
653 | |a Projective space. | ||
653 | |a Projective variety. | ||
653 | |a Proper morphism. | ||
653 | |a Puiseux series. | ||
653 | |a Quasi-projective variety. | ||
653 | |a Rational function. | ||
653 | |a Regular local ring. | ||
653 | |a Resolution of singularities. | ||
653 | |a Riemann surface. | ||
653 | |a Ring theory. | ||
653 | |a Ruler. | ||
653 | |a Scientific notation. | ||
653 | |a Sheaf (mathematics). | ||
653 | |a Singularity theory. | ||
653 | |a Smooth morphism. | ||
653 | |a Smoothness. | ||
653 | |a Special case. | ||
653 | |a Subring. | ||
653 | |a Summation. | ||
653 | |a Surjective function. | ||
653 | |a Tangent cone. | ||
653 | |a Tangent space. | ||
653 | |a Tangent. | ||
653 | |a Taylor series. | ||
653 | |a Theorem. | ||
653 | |a Topology. | ||
653 | |a Toric variety. | ||
653 | |a Transversal (geometry). | ||
653 | |a Variable (mathematics). | ||
653 | |a Weierstrass preparation theorem. | ||
653 | |a Weierstrass theorem. | ||
653 | |a Zero set. | ||
758 | |i has work: |a Lectures on resolution of singularities (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH8XY7XDdmm7JxkwTxCFw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kollár, János. |t Lectures on resolution of singularities. |d Princeton : Princeton University Press, 2007 |z 9780691129228 |z 0691129223 |w (DLC) 2006050554 |w (OCoLC)70839833 |
830 | 0 | |a Annals of mathematics studies ; |v no. 166. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286663 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL457845 | ||
938 | |a ebrary |b EBRY |n ebr10312431 | ||
938 | |a EBSCOhost |b EBSC |n 286663 | ||
938 | |a YBP Library Services |b YANK |n 3061172 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn438732324 |
---|---|
_version_ | 1816881698769469440 |
adam_text | |
any_adam_object | |
author | Kollár, János |
author_GND | http://id.loc.gov/authorities/names/nr89014031 |
author_facet | Kollár, János |
author_role | |
author_sort | Kollár, János |
author_variant | j k jk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.58 .K68 2007eb |
callnumber-search | QA614.58 .K68 2007eb |
callnumber-sort | QA 3614.58 K68 42007EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 |
collection | ZDB-4-EBA |
contents | Contents; Introduction; Chapter 1. Resolution for Curves; Chapter 2. Resolution for Surfaces; Chapter 3. Strong Resolution in Characteristic Zero; Bibliography; Index. |
ctrlnum | (OCoLC)438732324 |
dewey-full | 516.3/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/5 |
dewey-search | 516.3/5 |
dewey-sort | 3516.3 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08094cam a2201909 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn438732324</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090924s2007 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">AZU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">AZK</subfield><subfield code="d">MOR</subfield><subfield code="d">OCLCE</subfield><subfield code="d">PIFAG</subfield><subfield code="d">JBG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLB</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">519864148</subfield><subfield code="a">535937711</subfield><subfield code="a">647823071</subfield><subfield code="a">961557219</subfield><subfield code="a">989132180</subfield><subfield code="a">991996797</subfield><subfield code="a">994985055</subfield><subfield code="a">1018020755</subfield><subfield code="a">1037909196</subfield><subfield code="a">1052562193</subfield><subfield code="a">1058089681</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400827800</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400827809</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691129228</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691129223</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691129235</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691129231</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400827800</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)438732324</subfield><subfield code="z">(OCoLC)519864148</subfield><subfield code="z">(OCoLC)535937711</subfield><subfield code="z">(OCoLC)647823071</subfield><subfield code="z">(OCoLC)961557219</subfield><subfield code="z">(OCoLC)989132180</subfield><subfield code="z">(OCoLC)991996797</subfield><subfield code="z">(OCoLC)994985055</subfield><subfield code="z">(OCoLC)1018020755</subfield><subfield code="z">(OCoLC)1037909196</subfield><subfield code="z">(OCoLC)1052562193</subfield><subfield code="z">(OCoLC)1058089681</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttts9n</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.58</subfield><subfield code="b">.K68 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kollár, János.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr89014031</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on resolution of singularities /</subfield><subfield code="c">János Kollár.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vi, 208 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 166</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 197-202) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, Janos Kollar provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollar goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Contents; Introduction; Chapter 1. Resolution for Curves; Chapter 2. Resolution for Surfaces; Chapter 3. Strong Resolution in Characteristic Zero; Bibliography; Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2011.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2011</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Singularities (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85122871</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Singularités (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Singularities (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Fläche</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4195660-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4001165-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Auflösung von Singularitäten</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4181537-3</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Adjunction formula.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic closure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic surface.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Approximation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Asymptotic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bernhard Riemann.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big O notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Birational geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">C0.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Canonical singularity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Codimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Commutative algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computability.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagram (category theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential geometry of surfaces.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Divisor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Du Val singularity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dual graph.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Embedding.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Factorization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Functor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">General position.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Generic point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometric genus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperplane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hypersurface.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integral domain.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intersection (set theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intersection number (graph theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Intersection theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Irreducible component.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Isolated singularity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Laurent series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Line bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear space (geometry).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear subspace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical induction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Maximal ideal.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Morphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Newton polygon.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Noetherian ring.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Noetherian.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open problem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">P-adic number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pairwise.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parametric equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial derivative.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Plane curve.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Power series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Principal ideal.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Principalization (algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projective space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projective variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Proper morphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Puiseux series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quasi-projective variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rational function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Regular local ring.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Resolution of singularities.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann surface.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ring theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Ruler.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sheaf (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Singularity theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Smooth morphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Smoothness.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subring.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Summation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Surjective function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent cone.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Taylor series.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Toric variety.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Transversal (geometry).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weierstrass preparation theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Weierstrass theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zero set.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Lectures on resolution of singularities (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH8XY7XDdmm7JxkwTxCFw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kollár, János.</subfield><subfield code="t">Lectures on resolution of singularities.</subfield><subfield code="d">Princeton : Princeton University Press, 2007</subfield><subfield code="z">9780691129228</subfield><subfield code="z">0691129223</subfield><subfield code="w">(DLC) 2006050554</subfield><subfield code="w">(OCoLC)70839833</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 166.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286663</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL457845</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10312431</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">286663</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3061172</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn438732324 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:51Z |
institution | BVB |
isbn | 9781400827800 1400827809 |
language | English |
oclc_num | 438732324 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vi, 208 pages) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Kollár, János. http://id.loc.gov/authorities/names/nr89014031 Lectures on resolution of singularities / János Kollár. Princeton : Princeton University Press, 2007. 1 online resource (vi, 208 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 166 Includes bibliographical references (pages 197-202) and index. Resolution of singularities is a powerful and frequently used tool in algebraic geometry. In this book, Janos Kollar provides a comprehensive treatment of the characteristic 0 case. He describes more than a dozen proofs for curves, many based on the original papers of Newton, Riemann, and Noether. Kollar goes back to the original sources and presents them in a modern context. He addresses three methods for surfaces, and gives a self-contained and entirely elementary proof of a strong and functorial resolution in all dimensions. Based on a series of lectures at Princeton University and written. Print version record. Contents; Introduction; Chapter 1. Resolution for Curves; Chapter 2. Resolution for Surfaces; Chapter 3. Strong Resolution in Characteristic Zero; Bibliography; Index. In English. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2011. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2011 HathiTrust Digital Library committed to preserve pda MiAaHDL Singularities (Mathematics) http://id.loc.gov/authorities/subjects/sh85122871 Singularités (Mathématiques) MATHEMATICS Geometry Algebraic. bisacsh Singularities (Mathematics) fast Algebraische Fläche gnd http://d-nb.info/gnd/4195660-6 Algebraische Kurve gnd http://d-nb.info/gnd/4001165-3 Auflösung von Singularitäten gnd http://d-nb.info/gnd/4181537-3 Adjunction formula. Algebraic closure. Algebraic geometry. Algebraic space. Algebraic surface. Algebraic variety. Approximation. Asymptotic analysis. Automorphism. Bernhard Riemann. Big O notation. Birational geometry. C0. Canonical singularity. Codimension. Cohomology. Commutative algebra. Complex analysis. Complex manifold. Computability. Continuous function. Coordinate system. Diagram (category theory). Differential geometry of surfaces. Dimension. Divisor. Du Val singularity. Dual graph. Embedding. Equation. Equivalence relation. Euclidean algorithm. Factorization. Functor. General position. Generic point. Geometric genus. Geometry. Hyperplane. Hypersurface. Integral domain. Intersection (set theory). Intersection number (graph theory). Intersection theory. Irreducible component. Isolated singularity. Laurent series. Line bundle. Linear space (geometry). Linear subspace. Mathematical induction. Mathematics. Maximal ideal. Morphism. Newton polygon. Noetherian ring. Noetherian. Open problem. Open set. P-adic number. Pairwise. Parametric equation. Partial derivative. Plane curve. Polynomial. Power series. Principal ideal. Principalization (algebra). Projective space. Projective variety. Proper morphism. Puiseux series. Quasi-projective variety. Rational function. Regular local ring. Resolution of singularities. Riemann surface. Ring theory. Ruler. Scientific notation. Sheaf (mathematics). Singularity theory. Smooth morphism. Smoothness. Special case. Subring. Summation. Surjective function. Tangent cone. Tangent space. Tangent. Taylor series. Theorem. Topology. Toric variety. Transversal (geometry). Variable (mathematics). Weierstrass preparation theorem. Weierstrass theorem. Zero set. has work: Lectures on resolution of singularities (Text) https://id.oclc.org/worldcat/entity/E39PCH8XY7XDdmm7JxkwTxCFw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Kollár, János. Lectures on resolution of singularities. Princeton : Princeton University Press, 2007 9780691129228 0691129223 (DLC) 2006050554 (OCoLC)70839833 Annals of mathematics studies ; no. 166. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286663 Volltext |
spellingShingle | Kollár, János Lectures on resolution of singularities / Annals of mathematics studies ; Contents; Introduction; Chapter 1. Resolution for Curves; Chapter 2. Resolution for Surfaces; Chapter 3. Strong Resolution in Characteristic Zero; Bibliography; Index. Singularities (Mathematics) http://id.loc.gov/authorities/subjects/sh85122871 Singularités (Mathématiques) MATHEMATICS Geometry Algebraic. bisacsh Singularities (Mathematics) fast Algebraische Fläche gnd http://d-nb.info/gnd/4195660-6 Algebraische Kurve gnd http://d-nb.info/gnd/4001165-3 Auflösung von Singularitäten gnd http://d-nb.info/gnd/4181537-3 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85122871 http://d-nb.info/gnd/4195660-6 http://d-nb.info/gnd/4001165-3 http://d-nb.info/gnd/4181537-3 |
title | Lectures on resolution of singularities / |
title_auth | Lectures on resolution of singularities / |
title_exact_search | Lectures on resolution of singularities / |
title_full | Lectures on resolution of singularities / János Kollár. |
title_fullStr | Lectures on resolution of singularities / János Kollár. |
title_full_unstemmed | Lectures on resolution of singularities / János Kollár. |
title_short | Lectures on resolution of singularities / |
title_sort | lectures on resolution of singularities |
topic | Singularities (Mathematics) http://id.loc.gov/authorities/subjects/sh85122871 Singularités (Mathématiques) MATHEMATICS Geometry Algebraic. bisacsh Singularities (Mathematics) fast Algebraische Fläche gnd http://d-nb.info/gnd/4195660-6 Algebraische Kurve gnd http://d-nb.info/gnd/4001165-3 Auflösung von Singularitäten gnd http://d-nb.info/gnd/4181537-3 |
topic_facet | Singularities (Mathematics) Singularités (Mathématiques) MATHEMATICS Geometry Algebraic. Algebraische Fläche Algebraische Kurve Auflösung von Singularitäten |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286663 |
work_keys_str_mv | AT kollarjanos lecturesonresolutionofsingularities |