Radon transforms and the rigidity of the grassmannians /:
This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. ; Woodstock :
Princeton University Press,
2004.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 156. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th. |
Beschreibung: | 1 online resource (333 pages) |
Bibliographie: | Includes bibliographical references (pages 357-361) and index. |
ISBN: | 9781400826179 1400826179 9780691118987 0691118981 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn437268713 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090921s2004 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d EBLCP |d IDEBK |d OCLCQ |d MHW |d OCLCQ |d DEBSZ |d JSTOR |d OCLCQ |d NLGGC |d E7B |d AZU |d UMI |d REDDC |d OCLCQ |d COO |d OCLCQ |d OCLCF |d AGLDB |d UIU |d JBG |d MOR |d PIFAG |d OTZ |d ZCU |d WT2 |d MERUC |d VT2 |d OCLCQ |d IOG |d OCLCO |d U3W |d EZ9 |d OCL |d STF |d WRM |d VTS |d CEF |d NRAMU |d ICG |d INT |d AU@ |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d VLB |d MM9 |d AJS |d OCLCQ |d INARC |d OCLCO |d OCLCQ |d OCLCO |d NUI | ||
016 | 7 | |a 012275163 |2 Uk | |
019 | |a 519864672 |a 647823170 |a 757993146 |a 773222911 |a 827905784 |a 961549311 |a 962616347 |a 1058004551 | ||
020 | |a 9781400826179 |q (electronic bk.) | ||
020 | |a 1400826179 |q (electronic bk.) | ||
020 | |a 9780691118987 |q (acid-free paper) | ||
020 | |a 0691118981 |q (acid-free paper) | ||
020 | |z 0691118981 |q (acid-free paper) | ||
020 | |z 069111899X |q (pbk.) | ||
020 | |z 9780691118994 |q (pbk.) | ||
024 | 7 | |a 10.1515/9781400826179 |2 doi | |
035 | |a (OCoLC)437268713 |z (OCoLC)519864672 |z (OCoLC)647823170 |z (OCoLC)757993146 |z (OCoLC)773222911 |z (OCoLC)827905784 |z (OCoLC)961549311 |z (OCoLC)962616347 |z (OCoLC)1058004551 | ||
037 | |a 22573/cttsp0f |b JSTOR | ||
050 | 4 | |a QA649 |b .G37 2007eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
072 | 7 | |a MAT012030 |2 bisacsh | |
082 | 7 | |a 515/.723 |2 22 | |
084 | |a 31.52 |2 bcl | ||
084 | |a 31.46 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Gasqui, Jacques. |0 http://id.loc.gov/authorities/names/n84073406 | |
245 | 1 | 0 | |a Radon transforms and the rigidity of the grassmannians / |c Jacques Gasqui and Hubert Goldschmidt. |
260 | |a Princeton, N.J. ; |a Woodstock : |b Princeton University Press, |c 2004. | ||
300 | |a 1 online resource (333 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 156 | |
520 | |a This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th. | ||
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references (pages 357-361) and index. | ||
505 | 0 | 0 | |t Frontmatter -- |t TABLE OF CONTENTS -- |t INTRODUCTION -- |t Chapter I. Symmetric Spaces and Einstein Manifolds -- |t Chapter II. Radon Transforms on Symmetric Spaces -- |t Chapter III. Symmetric Spaces of Rank One -- |t Chapter IV. The Real Grassmannians -- |t Chapter V. The Complex Quadric -- |t Chapter VI. The Rigidity of the Complex Quadric -- |t Chapter VII. The Rigidity of the Real Grassmannians -- |t Chapter VIII. The Complex Grassmannians -- |t Chapter IX. The Rigidity of the Complex Grassmannians -- |t Chapter X. Products of Symmetric Spaces -- |t References -- |t Index. |
546 | |a In English. | ||
600 | 1 | 0 | |a Goldschmidt, Hubert, |d 1942- |0 http://id.loc.gov/authorities/names/n84073407 |
650 | 0 | |a Radon transforms. |0 http://id.loc.gov/authorities/subjects/sh85110817 | |
650 | 0 | |a Rigidity (Geometry) |0 http://id.loc.gov/authorities/subjects/sh2002004428 | |
650 | 6 | |a Transformations de Radon. | |
650 | 6 | |a Rigidité (Géométrie) | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Rigidity (Geometry) |2 fast | |
650 | 7 | |a Radon transforms |2 fast | |
653 | |a Adjoint. | ||
653 | |a Automorphism. | ||
653 | |a Cartan decomposition. | ||
653 | |a Cartan subalgebra. | ||
653 | |a Casimir element. | ||
653 | |a Closed geodesic. | ||
653 | |a Cohomology. | ||
653 | |a Commutative property. | ||
653 | |a Complex manifold. | ||
653 | |a Complex number. | ||
653 | |a Complex projective plane. | ||
653 | |a Complex projective space. | ||
653 | |a Complex vector bundle. | ||
653 | |a Complexification. | ||
653 | |a Computation. | ||
653 | |a Constant curvature. | ||
653 | |a Coset. | ||
653 | |a Covering space. | ||
653 | |a Curvature. | ||
653 | |a Determinant. | ||
653 | |a Diagram (category theory). | ||
653 | |a Diffeomorphism. | ||
653 | |a Differential form. | ||
653 | |a Differential geometry. | ||
653 | |a Differential operator. | ||
653 | |a Dimension (vector space). | ||
653 | |a Dot product. | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Einstein manifold. | ||
653 | |a Elliptic operator. | ||
653 | |a Endomorphism. | ||
653 | |a Equivalence class. | ||
653 | |a Even and odd functions. | ||
653 | |a Exactness. | ||
653 | |a Existential quantification. | ||
653 | |a G-module. | ||
653 | |a Geometry. | ||
653 | |a Grassmannian. | ||
653 | |a Harmonic analysis. | ||
653 | |a Hermitian symmetric space. | ||
653 | |a Hodge dual. | ||
653 | |a Homogeneous space. | ||
653 | |a Identity element. | ||
653 | |a Implicit function. | ||
653 | |a Injective function. | ||
653 | |a Integer. | ||
653 | |a Integral. | ||
653 | |a Isometry. | ||
653 | |a Killing form. | ||
653 | |a Killing vector field. | ||
653 | |a Lemma (mathematics). | ||
653 | |a Lie algebra. | ||
653 | |a Lie derivative. | ||
653 | |a Line bundle. | ||
653 | |a Mathematical induction. | ||
653 | |a Morphism. | ||
653 | |a Open set. | ||
653 | |a Orthogonal complement. | ||
653 | |a Orthonormal basis. | ||
653 | |a Orthonormality. | ||
653 | |a Parity (mathematics). | ||
653 | |a Partial differential equation. | ||
653 | |a Projection (linear algebra). | ||
653 | |a Projective space. | ||
653 | |a Quadric. | ||
653 | |a Quaternionic projective space. | ||
653 | |a Quotient space (topology). | ||
653 | |a Radon transform. | ||
653 | |a Real number. | ||
653 | |a Real projective plane. | ||
653 | |a Real projective space. | ||
653 | |a Real structure. | ||
653 | |a Remainder. | ||
653 | |a Restriction (mathematics). | ||
653 | |a Riemann curvature tensor. | ||
653 | |a Riemann sphere. | ||
653 | |a Riemannian manifold. | ||
653 | |a Rigidity (mathematics). | ||
653 | |a Scalar curvature. | ||
653 | |a Second fundamental form. | ||
653 | |a Simple Lie group. | ||
653 | |a Standard basis. | ||
653 | |a Stokes' theorem. | ||
653 | |a Subgroup. | ||
653 | |a Submanifold. | ||
653 | |a Symmetric space. | ||
653 | |a Tangent bundle. | ||
653 | |a Tangent space. | ||
653 | |a Tangent vector. | ||
653 | |a Tensor. | ||
653 | |a Theorem. | ||
653 | |a Topological group. | ||
653 | |a Torus. | ||
653 | |a Unit vector. | ||
653 | |a Unitary group. | ||
653 | |a Vector bundle. | ||
653 | |a Vector field. | ||
653 | |a Vector space. | ||
653 | |a X-ray transform. | ||
653 | |a Zero of a function. | ||
776 | 0 | 8 | |i Print version: |a Gasqui, Jacques. |t Radon transforms and the rigidity of the grassmannians. |d Princeton, N.J. ; Woodstock : Princeton University Press, 2004 |z 0691118981 |z 9780691118987 |w (OCoLC)56446722 |
830 | 0 | |a Annals of mathematics studies ; |v no. 156. |0 http://id.loc.gov/authorities/names/n42002129 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286805 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26387296 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL457718 | ||
938 | |a ebrary |b EBRY |n ebr10312481 | ||
938 | |a EBSCOhost |b EBSC |n 286805 | ||
938 | |a Internet Archive |b INAR |n radontransformsr0000gasq | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn437268713 |
---|---|
_version_ | 1816881698611134465 |
adam_text | |
any_adam_object | |
author | Gasqui, Jacques |
author_GND | http://id.loc.gov/authorities/names/n84073406 |
author_facet | Gasqui, Jacques |
author_role | |
author_sort | Gasqui, Jacques |
author_variant | j g jg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .G37 2007eb |
callnumber-search | QA649 .G37 2007eb |
callnumber-sort | QA 3649 G37 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index. |
ctrlnum | (OCoLC)437268713 |
dewey-full | 515/.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.723 |
dewey-search | 515/.723 |
dewey-sort | 3515 3723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07991cam a2201909 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn437268713</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090921s2004 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">E7B</subfield><subfield code="d">AZU</subfield><subfield code="d">UMI</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">JBG</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">WT2</subfield><subfield code="d">MERUC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCL</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLB</subfield><subfield code="d">MM9</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">012275163</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">519864672</subfield><subfield code="a">647823170</subfield><subfield code="a">757993146</subfield><subfield code="a">773222911</subfield><subfield code="a">827905784</subfield><subfield code="a">961549311</subfield><subfield code="a">962616347</subfield><subfield code="a">1058004551</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400826179</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400826179</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691118987</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691118981</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691118981</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">069111899X</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691118994</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400826179</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)437268713</subfield><subfield code="z">(OCoLC)519864672</subfield><subfield code="z">(OCoLC)647823170</subfield><subfield code="z">(OCoLC)757993146</subfield><subfield code="z">(OCoLC)773222911</subfield><subfield code="z">(OCoLC)827905784</subfield><subfield code="z">(OCoLC)961549311</subfield><subfield code="z">(OCoLC)962616347</subfield><subfield code="z">(OCoLC)1058004551</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttsp0f</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.G37 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.723</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.52</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gasqui, Jacques.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84073406</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Radon transforms and the rigidity of the grassmannians /</subfield><subfield code="c">Jacques Gasqui and Hubert Goldschmidt.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. ;</subfield><subfield code="a">Woodstock :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (333 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 156</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 357-361) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Frontmatter --</subfield><subfield code="t">TABLE OF CONTENTS --</subfield><subfield code="t">INTRODUCTION --</subfield><subfield code="t">Chapter I. Symmetric Spaces and Einstein Manifolds --</subfield><subfield code="t">Chapter II. Radon Transforms on Symmetric Spaces --</subfield><subfield code="t">Chapter III. Symmetric Spaces of Rank One --</subfield><subfield code="t">Chapter IV. The Real Grassmannians --</subfield><subfield code="t">Chapter V. The Complex Quadric --</subfield><subfield code="t">Chapter VI. The Rigidity of the Complex Quadric --</subfield><subfield code="t">Chapter VII. The Rigidity of the Real Grassmannians --</subfield><subfield code="t">Chapter VIII. The Complex Grassmannians --</subfield><subfield code="t">Chapter IX. The Rigidity of the Complex Grassmannians --</subfield><subfield code="t">Chapter X. Products of Symmetric Spaces --</subfield><subfield code="t">References --</subfield><subfield code="t">Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="600" ind1="1" ind2="0"><subfield code="a">Goldschmidt, Hubert,</subfield><subfield code="d">1942-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84073407</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Radon transforms.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85110817</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Rigidity (Geometry)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004428</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Transformations de Radon.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Rigidité (Géométrie)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rigidity (Geometry)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radon transforms</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Adjoint.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Automorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cartan decomposition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cartan subalgebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Casimir element.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Closed geodesic.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cohomology.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Commutative property.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex projective plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex projective space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex vector bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complexification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Constant curvature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coset.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Covering space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Curvature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Determinant.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagram (category theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diffeomorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dot product.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Einstein manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elliptic operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Endomorphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence class.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Even and odd functions.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Exactness.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">G-module.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Grassmannian.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Harmonic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hermitian symmetric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hodge dual.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Homogeneous space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Identity element.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Implicit function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Injective function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integer.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integral.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Isometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Killing form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Killing vector field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lemma (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lie derivative.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Line bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical induction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Morphism.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthogonal complement.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthonormal basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthonormality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Parity (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial differential equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projection (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projective space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quadric.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quaternionic projective space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quotient space (topology).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Radon transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real projective plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real projective space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real structure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Remainder.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Restriction (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann curvature tensor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemann sphere.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemannian manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rigidity (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scalar curvature.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Second fundamental form.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Simple Lie group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Standard basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Stokes' theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subgroup.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Submanifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Symmetric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tangent vector.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tensor.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Topological group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Torus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit vector.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unitary group.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector bundle.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector field.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">X-ray transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zero of a function.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gasqui, Jacques.</subfield><subfield code="t">Radon transforms and the rigidity of the grassmannians.</subfield><subfield code="d">Princeton, N.J. ; Woodstock : Princeton University Press, 2004</subfield><subfield code="z">0691118981</subfield><subfield code="z">9780691118987</subfield><subfield code="w">(OCoLC)56446722</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 156.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42002129</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286805</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387296</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL457718</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10312481</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">286805</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">radontransformsr0000gasq</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn437268713 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:51Z |
institution | BVB |
isbn | 9781400826179 1400826179 9780691118987 0691118981 |
language | English |
oclc_num | 437268713 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (333 pages) |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Gasqui, Jacques. http://id.loc.gov/authorities/names/n84073406 Radon transforms and the rigidity of the grassmannians / Jacques Gasqui and Hubert Goldschmidt. Princeton, N.J. ; Woodstock : Princeton University Press, 2004. 1 online resource (333 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 156 This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? Th. Print version record. Includes bibliographical references (pages 357-361) and index. Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index. In English. Goldschmidt, Hubert, 1942- http://id.loc.gov/authorities/names/n84073407 Radon transforms. http://id.loc.gov/authorities/subjects/sh85110817 Rigidity (Geometry) http://id.loc.gov/authorities/subjects/sh2002004428 Transformations de Radon. Rigidité (Géométrie) MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry Differential. bisacsh Rigidity (Geometry) fast Radon transforms fast Adjoint. Automorphism. Cartan decomposition. Cartan subalgebra. Casimir element. Closed geodesic. Cohomology. Commutative property. Complex manifold. Complex number. Complex projective plane. Complex projective space. Complex vector bundle. Complexification. Computation. Constant curvature. Coset. Covering space. Curvature. Determinant. Diagram (category theory). Diffeomorphism. Differential form. Differential geometry. Differential operator. Dimension (vector space). Dot product. Eigenvalues and eigenvectors. Einstein manifold. Elliptic operator. Endomorphism. Equivalence class. Even and odd functions. Exactness. Existential quantification. G-module. Geometry. Grassmannian. Harmonic analysis. Hermitian symmetric space. Hodge dual. Homogeneous space. Identity element. Implicit function. Injective function. Integer. Integral. Isometry. Killing form. Killing vector field. Lemma (mathematics). Lie algebra. Lie derivative. Line bundle. Mathematical induction. Morphism. Open set. Orthogonal complement. Orthonormal basis. Orthonormality. Parity (mathematics). Partial differential equation. Projection (linear algebra). Projective space. Quadric. Quaternionic projective space. Quotient space (topology). Radon transform. Real number. Real projective plane. Real projective space. Real structure. Remainder. Restriction (mathematics). Riemann curvature tensor. Riemann sphere. Riemannian manifold. Rigidity (mathematics). Scalar curvature. Second fundamental form. Simple Lie group. Standard basis. Stokes' theorem. Subgroup. Submanifold. Symmetric space. Tangent bundle. Tangent space. Tangent vector. Tensor. Theorem. Topological group. Torus. Unit vector. Unitary group. Vector bundle. Vector field. Vector space. X-ray transform. Zero of a function. Print version: Gasqui, Jacques. Radon transforms and the rigidity of the grassmannians. Princeton, N.J. ; Woodstock : Princeton University Press, 2004 0691118981 9780691118987 (OCoLC)56446722 Annals of mathematics studies ; no. 156. http://id.loc.gov/authorities/names/n42002129 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286805 Volltext |
spellingShingle | Gasqui, Jacques Radon transforms and the rigidity of the grassmannians / Annals of mathematics studies ; Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index. Goldschmidt, Hubert, 1942- http://id.loc.gov/authorities/names/n84073407 Radon transforms. http://id.loc.gov/authorities/subjects/sh85110817 Rigidity (Geometry) http://id.loc.gov/authorities/subjects/sh2002004428 Transformations de Radon. Rigidité (Géométrie) MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry Differential. bisacsh Rigidity (Geometry) fast Radon transforms fast |
subject_GND | http://id.loc.gov/authorities/names/n84073407 http://id.loc.gov/authorities/subjects/sh85110817 http://id.loc.gov/authorities/subjects/sh2002004428 |
title | Radon transforms and the rigidity of the grassmannians / |
title_alt | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter I. Symmetric Spaces and Einstein Manifolds -- Chapter II. Radon Transforms on Symmetric Spaces -- Chapter III. Symmetric Spaces of Rank One -- Chapter IV. The Real Grassmannians -- Chapter V. The Complex Quadric -- Chapter VI. The Rigidity of the Complex Quadric -- Chapter VII. The Rigidity of the Real Grassmannians -- Chapter VIII. The Complex Grassmannians -- Chapter IX. The Rigidity of the Complex Grassmannians -- Chapter X. Products of Symmetric Spaces -- References -- Index. |
title_auth | Radon transforms and the rigidity of the grassmannians / |
title_exact_search | Radon transforms and the rigidity of the grassmannians / |
title_full | Radon transforms and the rigidity of the grassmannians / Jacques Gasqui and Hubert Goldschmidt. |
title_fullStr | Radon transforms and the rigidity of the grassmannians / Jacques Gasqui and Hubert Goldschmidt. |
title_full_unstemmed | Radon transforms and the rigidity of the grassmannians / Jacques Gasqui and Hubert Goldschmidt. |
title_short | Radon transforms and the rigidity of the grassmannians / |
title_sort | radon transforms and the rigidity of the grassmannians |
topic | Goldschmidt, Hubert, 1942- http://id.loc.gov/authorities/names/n84073407 Radon transforms. http://id.loc.gov/authorities/subjects/sh85110817 Rigidity (Geometry) http://id.loc.gov/authorities/subjects/sh2002004428 Transformations de Radon. Rigidité (Géométrie) MATHEMATICS Functional Analysis. bisacsh MATHEMATICS Geometry Differential. bisacsh Rigidity (Geometry) fast Radon transforms fast |
topic_facet | Goldschmidt, Hubert, 1942- Radon transforms. Rigidity (Geometry) Transformations de Radon. Rigidité (Géométrie) MATHEMATICS Functional Analysis. MATHEMATICS Geometry Differential. Radon transforms |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286805 |
work_keys_str_mv | AT gasquijacques radontransformsandtherigidityofthegrassmannians |