Multiplicative Number Theory I :: Classical Theory.
Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student f...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Leiden :
Cambridge University Press,
2006.
|
Schriftenreihe: | Cambridge studies in advanced mathematics ;
no. 97. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature. |
Beschreibung: | 1 online resource (572 pages) |
ISBN: | 9780511256455 0511256450 9780511618314 051161831X 9780521849036 0521849039 9781107405820 1107405823 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn437175104 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn|---||||| | ||
008 | 090817s2006 ne o 000 0 eng d | ||
040 | |a MERUC |b eng |e pn |c MERUC |d OCLCQ |d OL$ |d MNU |d CAMBR |d IDEBK |d N$T |d YDXCP |d OCLCF |d AU@ |d DEBSZ |d COO |d LVT |d OCLCQ |d EBLCP |d OCLCQ |d OCLCA |d OCLCQ |d OCLCO |d OCLCQ |d K6U |d LUN |d OCLCO |d OCLCQ |d AUW |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 161747343 |a 171125103 |a 171140114 |a 271789122 |a 668201248 |a 814470754 |a 819635168 |a 852652230 |a 1167231059 | ||
020 | |a 9780511256455 |q (electronic bk.) | ||
020 | |a 0511256450 |q (electronic bk.) | ||
020 | |a 9780511618314 |q (ebook) | ||
020 | |a 051161831X | ||
020 | |a 9780521849036 |q (hardback) | ||
020 | |a 0521849039 | ||
020 | |a 9781107405820 |q (paperback) | ||
020 | |a 1107405823 | ||
035 | |a (OCoLC)437175104 |z (OCoLC)161747343 |z (OCoLC)171125103 |z (OCoLC)171140114 |z (OCoLC)271789122 |z (OCoLC)668201248 |z (OCoLC)814470754 |z (OCoLC)819635168 |z (OCoLC)852652230 |z (OCoLC)1167231059 | ||
050 | 4 | |a QA246 .M75 2007eb | |
082 | 7 | |a 512.723 | |
049 | |a MAIN | ||
100 | 1 | |a Montgomery, Hugh L. | |
245 | 1 | 0 | |a Multiplicative Number Theory I : |b Classical Theory. |
260 | |a Leiden : |b Cambridge University Press, |c 2006. | ||
300 | |a 1 online resource (572 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge Studies in Advanced Mathematics ; |v no. 97 | |
505 | 0 | |a Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros. | |
505 | 8 | |a 15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index. | |
520 | |a Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Numbers, Prime. |0 http://id.loc.gov/authorities/subjects/sh85093218 | |
650 | 6 | |a Nombres premiers. | |
650 | 7 | |a Numbers, Prime |2 fast | |
700 | 1 | |a Vaughan, Robert C. |0 http://id.loc.gov/authorities/names/n86057987 | |
758 | |i has work: |a Multiplicative number theory I Classical theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJYMdjF6dqYjfgkpYTKtX |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |z 9780521849036 | |
830 | 0 | |a Cambridge studies in advanced mathematics ; |v no. 97. |0 http://id.loc.gov/authorities/names/n84708314 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178884 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL279333 | ||
938 | |a EBSCOhost |b EBSC |n 178884 | ||
938 | |a YBP Library Services |b YANK |n 2620056 | ||
938 | |a YBP Library Services |b YANK |n 2592608 | ||
938 | |a YBP Library Services |b YANK |n 3279266 | ||
938 | |a YBP Library Services |b YANK |n 2606051 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn437175104 |
---|---|
_version_ | 1816881698537734144 |
adam_text | |
any_adam_object | |
author | Montgomery, Hugh L. |
author2 | Vaughan, Robert C. |
author2_role | |
author2_variant | r c v rc rcv |
author_GND | http://id.loc.gov/authorities/names/n86057987 |
author_facet | Montgomery, Hugh L. Vaughan, Robert C. |
author_role | |
author_sort | Montgomery, Hugh L. |
author_variant | h l m hl hlm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246 .M75 2007eb |
callnumber-search | QA246 .M75 2007eb |
callnumber-sort | QA 3246 M75 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros. 15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index. |
ctrlnum | (OCoLC)437175104 |
dewey-full | 512.723 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.723 |
dewey-search | 512.723 |
dewey-sort | 3512.723 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03839cam a2200601 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn437175104</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|---|||||</controlfield><controlfield tag="008">090817s2006 ne o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MERUC</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">MNU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AU@</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">COO</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">161747343</subfield><subfield code="a">171125103</subfield><subfield code="a">171140114</subfield><subfield code="a">271789122</subfield><subfield code="a">668201248</subfield><subfield code="a">814470754</subfield><subfield code="a">819635168</subfield><subfield code="a">852652230</subfield><subfield code="a">1167231059</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511256455</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511256450</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618314</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051161831X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521849036</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521849039</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107405820</subfield><subfield code="q">(paperback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107405823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)437175104</subfield><subfield code="z">(OCoLC)161747343</subfield><subfield code="z">(OCoLC)171125103</subfield><subfield code="z">(OCoLC)171140114</subfield><subfield code="z">(OCoLC)271789122</subfield><subfield code="z">(OCoLC)668201248</subfield><subfield code="z">(OCoLC)814470754</subfield><subfield code="z">(OCoLC)819635168</subfield><subfield code="z">(OCoLC)852652230</subfield><subfield code="z">(OCoLC)1167231059</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA246 .M75 2007eb</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.723</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Montgomery, Hugh L.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative Number Theory I :</subfield><subfield code="b">Classical Theory.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Leiden :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (572 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Studies in Advanced Mathematics ;</subfield><subfield code="v">no. 97</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numbers, Prime.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093218</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres premiers.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Prime</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vaughan, Robert C.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86057987</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Multiplicative number theory I Classical theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJYMdjF6dqYjfgkpYTKtX</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780521849036</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics ;</subfield><subfield code="v">no. 97.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84708314</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178884</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL279333</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">178884</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2620056</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2592608</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3279266</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2606051</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn437175104 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:51Z |
institution | BVB |
isbn | 9780511256455 0511256450 9780511618314 051161831X 9780521849036 0521849039 9781107405820 1107405823 |
language | English |
oclc_num | 437175104 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (572 pages) |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge studies in advanced mathematics ; |
series2 | Cambridge Studies in Advanced Mathematics ; |
spelling | Montgomery, Hugh L. Multiplicative Number Theory I : Classical Theory. Leiden : Cambridge University Press, 2006. 1 online resource (572 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge Studies in Advanced Mathematics ; no. 97 Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros. 15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index. Prime numbers are the multiplicative building blocks of natural numbers. Understanding their overall influence and especially their distribution gives rise to central questions in mathematics and physics. The authors bring their extensive and distinguished research expertise to prepare the student for intelligent reading of the more advanced research literature. Print version record. Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Nombres premiers. Numbers, Prime fast Vaughan, Robert C. http://id.loc.gov/authorities/names/n86057987 has work: Multiplicative number theory I Classical theory (Text) https://id.oclc.org/worldcat/entity/E39PCGJYMdjF6dqYjfgkpYTKtX https://id.oclc.org/worldcat/ontology/hasWork 9780521849036 Cambridge studies in advanced mathematics ; no. 97. http://id.loc.gov/authorities/names/n84708314 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178884 Volltext |
spellingShingle | Montgomery, Hugh L. Multiplicative Number Theory I : Classical Theory. Cambridge studies in advanced mathematics ; Cover; Half-title; Series-title; Title; Copyright; Dedication; Contents; Preface; Notation; 1 Dirichlet series: I; 2 The elementary theory of arithmetic functions; 3 Principles and first examples of sieve methods; 4 Primes in arithmetic progressions: I; 5 Dirichlet series: II; 6 The Prime Number Theorem; 7 Applications of the Prime Number Theorem; 8 Further discussion of the Prime Number Theorem; 9 Primitive characters and Gauss sums; 10 Analytic properties of the zeta function and L-functions; 11 Primes in arithmetic progressions: II; 12 Explicit formulæ; 13 Conditional estimates; 14 Zeros. 15 Oscillations of error termsAppendix A The Riemann-Stieltjes integral; Appendix B Bernoulli numbers and the Euler-Maclaurin summation formula; Appendix C The gamma function; Appendix D Topics in harmonic analysis; Name index; Subject index. Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Nombres premiers. Numbers, Prime fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093218 |
title | Multiplicative Number Theory I : Classical Theory. |
title_auth | Multiplicative Number Theory I : Classical Theory. |
title_exact_search | Multiplicative Number Theory I : Classical Theory. |
title_full | Multiplicative Number Theory I : Classical Theory. |
title_fullStr | Multiplicative Number Theory I : Classical Theory. |
title_full_unstemmed | Multiplicative Number Theory I : Classical Theory. |
title_short | Multiplicative Number Theory I : |
title_sort | multiplicative number theory i classical theory |
title_sub | Classical Theory. |
topic | Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Nombres premiers. Numbers, Prime fast |
topic_facet | Numbers, Prime. Nombres premiers. Numbers, Prime |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=178884 |
work_keys_str_mv | AT montgomeryhughl multiplicativenumbertheoryiclassicaltheory AT vaughanrobertc multiplicativenumbertheoryiclassicaltheory |