Lectures on the theory of games /:
This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
2003.
|
Schriftenreihe: | Annals of mathematics studies ;
no. 37. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its frontiers half a century ago. Kuhn devotes considerable space to topics that, while not strictly the subject matter of game theory, are firmly bound to it. These are taken mainly from the geometry of convex sets and the theory of probability distributions. The book opens by addressing "matrix games. |
Beschreibung: | 1 online resource (ix, 107 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781400829569 1400829569 1282159119 9781282159112 9786612159114 6612159111 9780691027715 0691027714 9780691027722 0691027722 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn436089416 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090908s2003 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d EBLCP |d IDEBK |d E7B |d AZU |d OCLCQ |d MHW |d OCLCQ |d REDDC |d OCLCQ |d OCLCO |d OCLCQ |d DEBSZ |d JSTOR |d OCLCF |d OCLCQ |d NLGGC |d OCLCA |d YDXCP |d OCLCQ |d COO |d DEBBG |d AZK |d LOA |d JBG |d UIU |d AGLDB |d MOR |d PIFAG |d ZCU |d WT2 |d MERUC |d OCLCQ |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d ICG |d INT |d NRAMU |d VT2 |d OCLCQ |d WYU |d LVT |d OCLCQ |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d K6U |d OCLCQ |d UKCRE |d VLB |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d NUI |d OCLCQ | ||
019 | |a 519865403 |a 647823285 |a 961539716 |a 962729244 |a 965975708 |a 988524707 |a 992026106 |a 1037944158 |a 1038613183 |a 1045525753 |a 1066575852 |a 1153472721 |a 1162370899 |a 1181906792 | ||
020 | |a 9781400829569 |q (electronic bk.) | ||
020 | |a 1400829569 |q (electronic bk.) | ||
020 | |a 1282159119 | ||
020 | |a 9781282159112 | ||
020 | |a 9786612159114 | ||
020 | |a 6612159111 | ||
020 | |a 9780691027715 | ||
020 | |a 0691027714 | ||
020 | |a 9780691027722 | ||
020 | |a 0691027722 | ||
020 | |z 0691027714 |q (acid-free paper) | ||
020 | |z 0691027722 |q (pbk. ; |q acid-free paper) | ||
024 | 7 | |a 10.1515/9781400829569 |2 doi | |
035 | |a (OCoLC)436089416 |z (OCoLC)519865403 |z (OCoLC)647823285 |z (OCoLC)961539716 |z (OCoLC)962729244 |z (OCoLC)965975708 |z (OCoLC)988524707 |z (OCoLC)992026106 |z (OCoLC)1037944158 |z (OCoLC)1038613183 |z (OCoLC)1045525753 |z (OCoLC)1066575852 |z (OCoLC)1153472721 |z (OCoLC)1162370899 |z (OCoLC)1181906792 | ||
037 | |a 22573/ctts2xs |b JSTOR | ||
050 | 4 | |a QA269 |b .K83 2003eb | |
072 | 7 | |a MAT |x 011000 |2 bisacsh | |
072 | 7 | |a BUS069030 |2 bisacsh | |
072 | 7 | |a MAT011000 |2 bisacsh | |
082 | 7 | |a 519.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Kuhn, Harold W. |q (Harold William), |d 1925-2014. | |
245 | 1 | 0 | |a Lectures on the theory of games / |c Harold W. Kuhn. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c 2003. | ||
300 | |a 1 online resource (ix, 107 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies ; |v no. 37 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a What is the theory of games? -- Matrix games -- Extensive games -- Infinite games. | |
520 | |a This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its frontiers half a century ago. Kuhn devotes considerable space to topics that, while not strictly the subject matter of game theory, are firmly bound to it. These are taken mainly from the geometry of convex sets and the theory of probability distributions. The book opens by addressing "matrix games. | ||
588 | 0 | |a Print version record. | |
546 | |a In English. | ||
650 | 0 | |a Game theory. |0 http://id.loc.gov/authorities/subjects/sh85052941 | |
650 | 2 | |a Game Theory |0 https://id.nlm.nih.gov/mesh/D005716 | |
650 | 6 | |a Théorie des jeux. | |
650 | 7 | |a MATHEMATICS |x Game Theory. |2 bisacsh | |
650 | 7 | |a BUSINESS & ECONOMICS |x Economics |x Theory. |2 bisacsh | |
650 | 7 | |a Game theory |2 fast | |
650 | 1 | 7 | |a Speltheorie. |2 gtt |
650 | 7 | |a Teoria dos jogos. |2 larpcal | |
653 | |a Abstract algebra. | ||
653 | |a Addition. | ||
653 | |a Algorithm. | ||
653 | |a Almost surely. | ||
653 | |a Analytic geometry. | ||
653 | |a Axiom. | ||
653 | |a Basic solution (linear programming). | ||
653 | |a Big O notation. | ||
653 | |a Bijection. | ||
653 | |a Binary relation. | ||
653 | |a Boundary (topology). | ||
653 | |a Bounded set (topological vector space). | ||
653 | |a Branch point. | ||
653 | |a Calculation. | ||
653 | |a Cardinality of the continuum. | ||
653 | |a Cardinality. | ||
653 | |a Cartesian coordinate system. | ||
653 | |a Characteristic function (probability theory). | ||
653 | |a Combination. | ||
653 | |a Computation. | ||
653 | |a Connectivity (graph theory). | ||
653 | |a Constructive proof. | ||
653 | |a Convex combination. | ||
653 | |a Convex function. | ||
653 | |a Convex hull. | ||
653 | |a Convex set. | ||
653 | |a Coordinate system. | ||
653 | |a David Gale. | ||
653 | |a Diagram (category theory). | ||
653 | |a Differential equation. | ||
653 | |a Dimension (vector space). | ||
653 | |a Dimensional analysis. | ||
653 | |a Disjoint sets. | ||
653 | |a Distribution function. | ||
653 | |a Embedding. | ||
653 | |a Empty set. | ||
653 | |a Enumeration. | ||
653 | |a Equation. | ||
653 | |a Equilibrium point. | ||
653 | |a Equivalence relation. | ||
653 | |a Estimation. | ||
653 | |a Euclidean space. | ||
653 | |a Existential quantification. | ||
653 | |a Expected loss. | ||
653 | |a Extreme point. | ||
653 | |a Formal scheme. | ||
653 | |a Fundamental theorem. | ||
653 | |a Galois theory. | ||
653 | |a Geometry. | ||
653 | |a Hyperplane. | ||
653 | |a Inequality (mathematics). | ||
653 | |a Infimum and supremum. | ||
653 | |a Integer. | ||
653 | |a Iterative method. | ||
653 | |a Line segment. | ||
653 | |a Linear equation. | ||
653 | |a Linear inequality. | ||
653 | |a Matching Pennies. | ||
653 | |a Mathematical induction. | ||
653 | |a Mathematical optimization. | ||
653 | |a Mathematical theory. | ||
653 | |a Mathematician. | ||
653 | |a Mathematics. | ||
653 | |a Matrix (mathematics). | ||
653 | |a Measure (mathematics). | ||
653 | |a Min-max theorem. | ||
653 | |a Minimum distance. | ||
653 | |a Mutual exclusivity. | ||
653 | |a Prediction. | ||
653 | |a Probability distribution. | ||
653 | |a Probability interpretations. | ||
653 | |a Probability measure. | ||
653 | |a Probability theory. | ||
653 | |a Probability. | ||
653 | |a Proof by contradiction. | ||
653 | |a Quantity. | ||
653 | |a Rank (linear algebra). | ||
653 | |a Rational number. | ||
653 | |a Real number. | ||
653 | |a Requirement. | ||
653 | |a Scientific notation. | ||
653 | |a Sign (mathematics). | ||
653 | |a Solution set. | ||
653 | |a Special case. | ||
653 | |a Statistics. | ||
653 | |a Strategist. | ||
653 | |a Strategy (game theory). | ||
653 | |a Subset. | ||
653 | |a Theorem. | ||
653 | |a Theory of Games and Economic Behavior. | ||
653 | |a Theory. | ||
653 | |a Three-dimensional space (mathematics). | ||
653 | |a Total order. | ||
653 | |a Two-dimensional space. | ||
653 | |a Union (set theory). | ||
653 | |a Unit interval. | ||
653 | |a Unit square. | ||
653 | |a Vector Analysis. | ||
653 | |a Vector calculus. | ||
653 | |a Vector space. | ||
776 | 0 | 8 | |i Print version: |a Kuhn, Harold W. (Harold William), 1925- |t Lectures on the theory of games. |d Princeton, N.J. : Princeton University Press, 2003 |z 0691027714 |z 9780691027715 |w (DLC) 2002066294 |w (OCoLC)49525901 |
830 | 0 | |a Annals of mathematics studies ; |v no. 37. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286818 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH28126690 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL457848 | ||
938 | |a EBSCOhost |b EBSC |n 286818 | ||
938 | |a YBP Library Services |b YANK |n 3061211 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn436089416 |
---|---|
_version_ | 1816881698085797888 |
adam_text | |
any_adam_object | |
author | Kuhn, Harold W. (Harold William), 1925-2014 |
author_facet | Kuhn, Harold W. (Harold William), 1925-2014 |
author_role | |
author_sort | Kuhn, Harold W. 1925-2014 |
author_variant | h w k hw hwk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA269 |
callnumber-raw | QA269 .K83 2003eb |
callnumber-search | QA269 .K83 2003eb |
callnumber-sort | QA 3269 K83 42003EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | What is the theory of games? -- Matrix games -- Extensive games -- Infinite games. |
ctrlnum | (OCoLC)436089416 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07536cam a2201921 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn436089416</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090908s2003 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">AZU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCA</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">WT2</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLB</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">NUI</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">519865403</subfield><subfield code="a">647823285</subfield><subfield code="a">961539716</subfield><subfield code="a">962729244</subfield><subfield code="a">965975708</subfield><subfield code="a">988524707</subfield><subfield code="a">992026106</subfield><subfield code="a">1037944158</subfield><subfield code="a">1038613183</subfield><subfield code="a">1045525753</subfield><subfield code="a">1066575852</subfield><subfield code="a">1153472721</subfield><subfield code="a">1162370899</subfield><subfield code="a">1181906792</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400829569</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400829569</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282159119</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282159112</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612159114</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612159111</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691027715</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691027714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691027722</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691027722</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691027714</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691027722</subfield><subfield code="q">(pbk. ;</subfield><subfield code="q">acid-free paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400829569</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)436089416</subfield><subfield code="z">(OCoLC)519865403</subfield><subfield code="z">(OCoLC)647823285</subfield><subfield code="z">(OCoLC)961539716</subfield><subfield code="z">(OCoLC)962729244</subfield><subfield code="z">(OCoLC)965975708</subfield><subfield code="z">(OCoLC)988524707</subfield><subfield code="z">(OCoLC)992026106</subfield><subfield code="z">(OCoLC)1037944158</subfield><subfield code="z">(OCoLC)1038613183</subfield><subfield code="z">(OCoLC)1045525753</subfield><subfield code="z">(OCoLC)1066575852</subfield><subfield code="z">(OCoLC)1153472721</subfield><subfield code="z">(OCoLC)1162370899</subfield><subfield code="z">(OCoLC)1181906792</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctts2xs</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA269</subfield><subfield code="b">.K83 2003eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">011000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS069030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT011000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuhn, Harold W.</subfield><subfield code="q">(Harold William),</subfield><subfield code="d">1925-2014.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the theory of games /</subfield><subfield code="c">Harold W. Kuhn.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">2003.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 107 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 37</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">What is the theory of games? -- Matrix games -- Extensive games -- Infinite games.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its frontiers half a century ago. Kuhn devotes considerable space to topics that, while not strictly the subject matter of game theory, are firmly bound to it. These are taken mainly from the geometry of convex sets and the theory of probability distributions. The book opens by addressing "matrix games.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Game theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052941</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Game Theory</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D005716</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des jeux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Game Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="x">Economics</subfield><subfield code="x">Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Game theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Speltheorie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos jogos.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Abstract algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Addition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algorithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Almost surely.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Axiom.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Basic solution (linear programming).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big O notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bijection.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Binary relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Boundary (topology).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bounded set (topological vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Branch point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calculation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cardinality of the continuum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cardinality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cartesian coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characteristic function (probability theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Combination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Connectivity (graph theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Constructive proof.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex combination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex hull.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coordinate system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">David Gale.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagram (category theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimension (vector space).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Dimensional analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Disjoint sets.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Distribution function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Embedding.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Empty set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Enumeration.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equilibrium point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Estimation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Euclidean space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Expected loss.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Extreme point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Formal scheme.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Galois theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperplane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inequality (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integer.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Iterative method.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Line segment.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear inequality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matching Pennies.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical induction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical optimization.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematician.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Measure (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Min-max theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Minimum distance.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mutual exclusivity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prediction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability distribution.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability interpretations.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Proof by contradiction.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rank (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Rational number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Requirement.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sign (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Solution set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Statistics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Strategist.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Strategy (game theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Subset.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theory of Games and Economic Behavior.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theory.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Three-dimensional space (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Total order.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Two-dimensional space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Union (set theory).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit interval.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit square.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector Analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector calculus.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vector space.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kuhn, Harold W. (Harold William), 1925-</subfield><subfield code="t">Lectures on the theory of games.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, 2003</subfield><subfield code="z">0691027714</subfield><subfield code="z">9780691027715</subfield><subfield code="w">(DLC) 2002066294</subfield><subfield code="w">(OCoLC)49525901</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies ;</subfield><subfield code="v">no. 37.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286818</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28126690</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL457848</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">286818</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3061211</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn436089416 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:51Z |
institution | BVB |
isbn | 9781400829569 1400829569 1282159119 9781282159112 9786612159114 6612159111 9780691027715 0691027714 9780691027722 0691027722 |
language | English |
oclc_num | 436089416 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 107 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Princeton University Press, |
record_format | marc |
series | Annals of mathematics studies ; |
series2 | Annals of mathematics studies ; |
spelling | Kuhn, Harold W. (Harold William), 1925-2014. Lectures on the theory of games / Harold W. Kuhn. Princeton, N.J. : Princeton University Press, 2003. 1 online resource (ix, 107 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Annals of mathematics studies ; no. 37 Includes bibliographical references and index. What is the theory of games? -- Matrix games -- Extensive games -- Infinite games. This book is a spectacular introduction to the modern mathematical discipline known as the Theory of Games. Harold Kuhn first presented these lectures at Princeton University in 1952. They succinctly convey the essence of the theory, in part through the prism of the most exciting developments at its frontiers half a century ago. Kuhn devotes considerable space to topics that, while not strictly the subject matter of game theory, are firmly bound to it. These are taken mainly from the geometry of convex sets and the theory of probability distributions. The book opens by addressing "matrix games. Print version record. In English. Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Game Theory https://id.nlm.nih.gov/mesh/D005716 Théorie des jeux. MATHEMATICS Game Theory. bisacsh BUSINESS & ECONOMICS Economics Theory. bisacsh Game theory fast Speltheorie. gtt Teoria dos jogos. larpcal Abstract algebra. Addition. Algorithm. Almost surely. Analytic geometry. Axiom. Basic solution (linear programming). Big O notation. Bijection. Binary relation. Boundary (topology). Bounded set (topological vector space). Branch point. Calculation. Cardinality of the continuum. Cardinality. Cartesian coordinate system. Characteristic function (probability theory). Combination. Computation. Connectivity (graph theory). Constructive proof. Convex combination. Convex function. Convex hull. Convex set. Coordinate system. David Gale. Diagram (category theory). Differential equation. Dimension (vector space). Dimensional analysis. Disjoint sets. Distribution function. Embedding. Empty set. Enumeration. Equation. Equilibrium point. Equivalence relation. Estimation. Euclidean space. Existential quantification. Expected loss. Extreme point. Formal scheme. Fundamental theorem. Galois theory. Geometry. Hyperplane. Inequality (mathematics). Infimum and supremum. Integer. Iterative method. Line segment. Linear equation. Linear inequality. Matching Pennies. Mathematical induction. Mathematical optimization. Mathematical theory. Mathematician. Mathematics. Matrix (mathematics). Measure (mathematics). Min-max theorem. Minimum distance. Mutual exclusivity. Prediction. Probability distribution. Probability interpretations. Probability measure. Probability theory. Probability. Proof by contradiction. Quantity. Rank (linear algebra). Rational number. Real number. Requirement. Scientific notation. Sign (mathematics). Solution set. Special case. Statistics. Strategist. Strategy (game theory). Subset. Theorem. Theory of Games and Economic Behavior. Theory. Three-dimensional space (mathematics). Total order. Two-dimensional space. Union (set theory). Unit interval. Unit square. Vector Analysis. Vector calculus. Vector space. Print version: Kuhn, Harold W. (Harold William), 1925- Lectures on the theory of games. Princeton, N.J. : Princeton University Press, 2003 0691027714 9780691027715 (DLC) 2002066294 (OCoLC)49525901 Annals of mathematics studies ; no. 37. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286818 Volltext |
spellingShingle | Kuhn, Harold W. (Harold William), 1925-2014 Lectures on the theory of games / Annals of mathematics studies ; What is the theory of games? -- Matrix games -- Extensive games -- Infinite games. Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Game Theory https://id.nlm.nih.gov/mesh/D005716 Théorie des jeux. MATHEMATICS Game Theory. bisacsh BUSINESS & ECONOMICS Economics Theory. bisacsh Game theory fast Speltheorie. gtt Teoria dos jogos. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052941 https://id.nlm.nih.gov/mesh/D005716 |
title | Lectures on the theory of games / |
title_auth | Lectures on the theory of games / |
title_exact_search | Lectures on the theory of games / |
title_full | Lectures on the theory of games / Harold W. Kuhn. |
title_fullStr | Lectures on the theory of games / Harold W. Kuhn. |
title_full_unstemmed | Lectures on the theory of games / Harold W. Kuhn. |
title_short | Lectures on the theory of games / |
title_sort | lectures on the theory of games |
topic | Game theory. http://id.loc.gov/authorities/subjects/sh85052941 Game Theory https://id.nlm.nih.gov/mesh/D005716 Théorie des jeux. MATHEMATICS Game Theory. bisacsh BUSINESS & ECONOMICS Economics Theory. bisacsh Game theory fast Speltheorie. gtt Teoria dos jogos. larpcal |
topic_facet | Game theory. Game Theory Théorie des jeux. MATHEMATICS Game Theory. BUSINESS & ECONOMICS Economics Theory. Game theory Speltheorie. Teoria dos jogos. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=286818 |
work_keys_str_mv | AT kuhnharoldw lecturesonthetheoryofgames |