Subsystems of second order arithmetic /:
Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and to...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©2009.
|
Ausgabe: | 2nd ed. |
Schriftenreihe: | Perspectives in logic.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. |
Beschreibung: | "Association for Symbolic Logic." |
Beschreibung: | 1 online resource (xvi, 444 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 409-424) and index. |
ISBN: | 9780511580680 0511580681 9780511579110 051157911X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn435767669 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mnu---unuuu | ||
008 | 090904s2009 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d OSU |d OCLCQ |d E7B |d SNK |d CUY |d OCLCQ |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d UAB |d OCLCQ |d XOS |d OCLCQ |d K6U |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
016 | 7 | |z 014883736 |2 Uk | |
019 | |a 646834498 |a 712986009 |a 743431750 | ||
020 | |a 9780511580680 |q (electronic bk.) | ||
020 | |a 0511580681 |q (electronic bk.) | ||
020 | |a 9780511579110 |q (ebook) | ||
020 | |a 051157911X |q (ebook) | ||
020 | |z 9780521884396 |q (hardback) | ||
020 | |z 052188439X |q (hardback) | ||
035 | |a (OCoLC)435767669 |z (OCoLC)646834498 |z (OCoLC)712986009 |z (OCoLC)743431750 | ||
050 | 4 | |a QA9.7 |b .S537 2009eb | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Simpson, Stephen G. |q (Stephen George), |d 1945- |1 https://id.oclc.org/worldcat/entity/E39PBJxRypbYYxyT4BCrjjwt8C |0 http://id.loc.gov/authorities/names/n85298999 | |
245 | 1 | 0 | |a Subsystems of second order arithmetic / |c Stephen G. Simpson. |
250 | |a 2nd ed. | ||
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©2009. | ||
300 | |a 1 online resource (xvi, 444 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Perspectives in logic | |
500 | |a "Association for Symbolic Logic." | ||
504 | |a Includes bibliographical references (pages 409-424) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. | ||
505 | 0 | |a COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; Chapter I INTRODUCTION; I.1. The Main Question; I.2. Subsystems of Z2; I.3. The System ACA0; I.4. Mathematics within ACA0; I.5. Pi11 -CA0 and Stronger Systems; I.6. Mathematics within Pi11 -CA0; I.7. The System RCA0; I.8. Mathematics within RCA0; I.9. Reverse Mathematics; I.10. The System WKL0; I.11. The System ATR0; I.12. The Main Question, Revisited; I.13. Outline of Chapters II through X; I.14. Conclusions; Part A DEVELOPMENT OF MATHEMATICS WITHIN SUBSYSTEMS OF Z2 | |
505 | 8 | |a Chapter II RECURSIVE COMPREHENSIONChapter III ARITHMETICAL COMPREHENSION; Chapter IV WEAK KÖNIG'S LEMMA; Chapter V ARITHMETICAL TRANSFINITE RECURSION; Chapter VI Pi11 COMPREHENSION; Part B MODELS OF SUBSYSTEMS OF Z2; Chapter VII beta-MODELS; Chapter VIII omega-MODELS; Chapter IX NON-omega-MODELS; APPENDIX; Chapter X ADDITIONAL RESULTS; BIBLIOGRAPHY; INDEX | |
650 | 0 | |a Predicate calculus. |0 http://id.loc.gov/authorities/subjects/sh85106251 | |
650 | 6 | |a Calcul des prédicats. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Predicate calculus |2 fast | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
710 | 2 | |a Association for Symbolic Logic. |0 http://id.loc.gov/authorities/names/n50054564 | |
776 | 0 | 8 | |i Print version: |a Simpson, Stephen G. (Stephen George), 1945- |t Subsystems of second order arithmetic. |b 2nd ed. |d Cambridge ; New York : Cambridge University Press, 2009 |z 9780521884396 |w (DLC) 2008052364 |w (OCoLC)288374692 |
830 | 0 | |a Perspectives in logic. |0 http://id.loc.gov/authorities/names/no2009092095 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=284320 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 284320 | ||
938 | |a YBP Library Services |b YANK |n 3107980 | ||
938 | |a YBP Library Services |b YANK |n 3093670 | ||
938 | |a YBP Library Services |b YANK |n 3095130 | ||
938 | |a YBP Library Services |b YANK |n 3277675 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn435767669 |
---|---|
_version_ | 1816881697594015745 |
adam_text | |
any_adam_object | |
author | Simpson, Stephen G. (Stephen George), 1945- |
author_GND | http://id.loc.gov/authorities/names/n85298999 |
author_corporate | Association for Symbolic Logic |
author_corporate_role | |
author_facet | Simpson, Stephen G. (Stephen George), 1945- Association for Symbolic Logic |
author_role | |
author_sort | Simpson, Stephen G. 1945- |
author_variant | s g s sg sgs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.7 .S537 2009eb |
callnumber-search | QA9.7 .S537 2009eb |
callnumber-sort | QA 19.7 S537 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; Chapter I INTRODUCTION; I.1. The Main Question; I.2. Subsystems of Z2; I.3. The System ACA0; I.4. Mathematics within ACA0; I.5. Pi11 -CA0 and Stronger Systems; I.6. Mathematics within Pi11 -CA0; I.7. The System RCA0; I.8. Mathematics within RCA0; I.9. Reverse Mathematics; I.10. The System WKL0; I.11. The System ATR0; I.12. The Main Question, Revisited; I.13. Outline of Chapters II through X; I.14. Conclusions; Part A DEVELOPMENT OF MATHEMATICS WITHIN SUBSYSTEMS OF Z2 Chapter II RECURSIVE COMPREHENSIONChapter III ARITHMETICAL COMPREHENSION; Chapter IV WEAK KÖNIG'S LEMMA; Chapter V ARITHMETICAL TRANSFINITE RECURSION; Chapter VI Pi11 COMPREHENSION; Part B MODELS OF SUBSYSTEMS OF Z2; Chapter VII beta-MODELS; Chapter VIII omega-MODELS; Chapter IX NON-omega-MODELS; APPENDIX; Chapter X ADDITIONAL RESULTS; BIBLIOGRAPHY; INDEX |
ctrlnum | (OCoLC)435767669 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04751cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn435767669</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mnu---unuuu</controlfield><controlfield tag="008">090904s2009 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">SNK</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">XOS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">014883736</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646834498</subfield><subfield code="a">712986009</subfield><subfield code="a">743431750</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511580680</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511580681</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511579110</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">051157911X</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521884396</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052188439X</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)435767669</subfield><subfield code="z">(OCoLC)646834498</subfield><subfield code="z">(OCoLC)712986009</subfield><subfield code="z">(OCoLC)743431750</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9.7</subfield><subfield code="b">.S537 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Simpson, Stephen G.</subfield><subfield code="q">(Stephen George),</subfield><subfield code="d">1945-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJxRypbYYxyT4BCrjjwt8C</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85298999</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subsystems of second order arithmetic /</subfield><subfield code="c">Stephen G. Simpson.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 444 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Perspectives in logic</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Association for Symbolic Logic."</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 409-424) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; Chapter I INTRODUCTION; I.1. The Main Question; I.2. Subsystems of Z2; I.3. The System ACA0; I.4. Mathematics within ACA0; I.5. Pi11 -CA0 and Stronger Systems; I.6. Mathematics within Pi11 -CA0; I.7. The System RCA0; I.8. Mathematics within RCA0; I.9. Reverse Mathematics; I.10. The System WKL0; I.11. The System ATR0; I.12. The Main Question, Revisited; I.13. Outline of Chapters II through X; I.14. Conclusions; Part A DEVELOPMENT OF MATHEMATICS WITHIN SUBSYSTEMS OF Z2</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter II RECURSIVE COMPREHENSIONChapter III ARITHMETICAL COMPREHENSION; Chapter IV WEAK KÖNIG'S LEMMA; Chapter V ARITHMETICAL TRANSFINITE RECURSION; Chapter VI Pi11 COMPREHENSION; Part B MODELS OF SUBSYSTEMS OF Z2; Chapter VII beta-MODELS; Chapter VIII omega-MODELS; Chapter IX NON-omega-MODELS; APPENDIX; Chapter X ADDITIONAL RESULTS; BIBLIOGRAPHY; INDEX</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Predicate calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85106251</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul des prédicats.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Predicate calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Association for Symbolic Logic.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n50054564</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Simpson, Stephen G. (Stephen George), 1945-</subfield><subfield code="t">Subsystems of second order arithmetic.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2009</subfield><subfield code="z">9780521884396</subfield><subfield code="w">(DLC) 2008052364</subfield><subfield code="w">(OCoLC)288374692</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Perspectives in logic.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2009092095</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=284320</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">284320</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3107980</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3093670</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3095130</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3277675</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn435767669 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:50Z |
institution | BVB |
institution_GND | http://id.loc.gov/authorities/names/n50054564 |
isbn | 9780511580680 0511580681 9780511579110 051157911X |
language | English |
oclc_num | 435767669 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 444 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
series | Perspectives in logic. |
series2 | Perspectives in logic |
spelling | Simpson, Stephen G. (Stephen George), 1945- https://id.oclc.org/worldcat/entity/E39PBJxRypbYYxyT4BCrjjwt8C http://id.loc.gov/authorities/names/n85298999 Subsystems of second order arithmetic / Stephen G. Simpson. 2nd ed. Cambridge ; New York : Cambridge University Press, ©2009. 1 online resource (xvi, 444 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Perspectives in logic "Association for Symbolic Logic." Includes bibliographical references (pages 409-424) and index. Print version record. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; Chapter I INTRODUCTION; I.1. The Main Question; I.2. Subsystems of Z2; I.3. The System ACA0; I.4. Mathematics within ACA0; I.5. Pi11 -CA0 and Stronger Systems; I.6. Mathematics within Pi11 -CA0; I.7. The System RCA0; I.8. Mathematics within RCA0; I.9. Reverse Mathematics; I.10. The System WKL0; I.11. The System ATR0; I.12. The Main Question, Revisited; I.13. Outline of Chapters II through X; I.14. Conclusions; Part A DEVELOPMENT OF MATHEMATICS WITHIN SUBSYSTEMS OF Z2 Chapter II RECURSIVE COMPREHENSIONChapter III ARITHMETICAL COMPREHENSION; Chapter IV WEAK KÖNIG'S LEMMA; Chapter V ARITHMETICAL TRANSFINITE RECURSION; Chapter VI Pi11 COMPREHENSION; Part B MODELS OF SUBSYSTEMS OF Z2; Chapter VII beta-MODELS; Chapter VIII omega-MODELS; Chapter IX NON-omega-MODELS; APPENDIX; Chapter X ADDITIONAL RESULTS; BIBLIOGRAPHY; INDEX Predicate calculus. http://id.loc.gov/authorities/subjects/sh85106251 Calcul des prédicats. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Predicate calculus fast Electronic books. Association for Symbolic Logic. http://id.loc.gov/authorities/names/n50054564 Print version: Simpson, Stephen G. (Stephen George), 1945- Subsystems of second order arithmetic. 2nd ed. Cambridge ; New York : Cambridge University Press, 2009 9780521884396 (DLC) 2008052364 (OCoLC)288374692 Perspectives in logic. http://id.loc.gov/authorities/names/no2009092095 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=284320 Volltext |
spellingShingle | Simpson, Stephen G. (Stephen George), 1945- Subsystems of second order arithmetic / Perspectives in logic. COVER; HALF-TITLE; SERIES-TITLE; TITLE; COPYRIGHT; CONTENTS; LIST OF TABLES; PREFACE; ACKNOWLEDGMENTS; Chapter I INTRODUCTION; I.1. The Main Question; I.2. Subsystems of Z2; I.3. The System ACA0; I.4. Mathematics within ACA0; I.5. Pi11 -CA0 and Stronger Systems; I.6. Mathematics within Pi11 -CA0; I.7. The System RCA0; I.8. Mathematics within RCA0; I.9. Reverse Mathematics; I.10. The System WKL0; I.11. The System ATR0; I.12. The Main Question, Revisited; I.13. Outline of Chapters II through X; I.14. Conclusions; Part A DEVELOPMENT OF MATHEMATICS WITHIN SUBSYSTEMS OF Z2 Chapter II RECURSIVE COMPREHENSIONChapter III ARITHMETICAL COMPREHENSION; Chapter IV WEAK KÖNIG'S LEMMA; Chapter V ARITHMETICAL TRANSFINITE RECURSION; Chapter VI Pi11 COMPREHENSION; Part B MODELS OF SUBSYSTEMS OF Z2; Chapter VII beta-MODELS; Chapter VIII omega-MODELS; Chapter IX NON-omega-MODELS; APPENDIX; Chapter X ADDITIONAL RESULTS; BIBLIOGRAPHY; INDEX Predicate calculus. http://id.loc.gov/authorities/subjects/sh85106251 Calcul des prédicats. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Predicate calculus fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85106251 |
title | Subsystems of second order arithmetic / |
title_auth | Subsystems of second order arithmetic / |
title_exact_search | Subsystems of second order arithmetic / |
title_full | Subsystems of second order arithmetic / Stephen G. Simpson. |
title_fullStr | Subsystems of second order arithmetic / Stephen G. Simpson. |
title_full_unstemmed | Subsystems of second order arithmetic / Stephen G. Simpson. |
title_short | Subsystems of second order arithmetic / |
title_sort | subsystems of second order arithmetic |
topic | Predicate calculus. http://id.loc.gov/authorities/subjects/sh85106251 Calcul des prédicats. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Predicate calculus fast |
topic_facet | Predicate calculus. Calcul des prédicats. MATHEMATICS Infinity. MATHEMATICS Logic. Predicate calculus Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=284320 |
work_keys_str_mv | AT simpsonstepheng subsystemsofsecondorderarithmetic AT associationforsymboliclogic subsystemsofsecondorderarithmetic |