Simple Lie algebras over fields of positive characteristic.: I, Structure theory /
The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
New York :
Walter de Gruyter,
2004.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
38. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. |
Beschreibung: | 1 online resource (viii, 540 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 527-537) and index. |
ISBN: | 9783110197945 3110197944 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn435620160 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090902s2004 nyua ob 001 0 ger d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d IDEBK |d OCLCQ |d MHW |d OCLCQ |d OCLCO |d OCLCQ |d N$T |d OCLCF |d NLGGC |d DEBSZ |d OCLCQ |d EBLCP |d OCLCQ |d UIU |d AGLDB |d ZCU |d MERUC |d OCLCQ |d VTS |d ICG |d OCLCQ |d STF |d DKC |d OCLCQ |d K6U |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 191246194 |a 935264246 | ||
020 | |a 9783110197945 |q (electronic bk.) | ||
020 | |a 3110197944 |q (electronic bk.) | ||
035 | |a (OCoLC)435620160 |z (OCoLC)191246194 |z (OCoLC)935264246 | ||
050 | 4 | |a QA252.3 |b .S78eb vol. 1 | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Strade, Helmut, |d 1942- |0 http://id.loc.gov/authorities/names/n86008393 | |
245 | 1 | 0 | |a Simple Lie algebras over fields of positive characteristic. |n I, |p Structure theory / |c by Helmut Strade. |
246 | 3 | 0 | |a Structure theory |
260 | |a New York : |b Walter de Gruyter, |c 2004. | ||
300 | |a 1 online resource (viii, 540 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v 38 | |
504 | |a Includes bibliographical references (pages 527-537) and index. | ||
505 | 0 | |a Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index. | |
520 | |a The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
758 | |i has work: |a Structure theory I Simple Lie algebras over fields of positive characteristic (Text) |1 https://id.oclc.org/worldcat/entity/E39PCH34pqRTbTjRxwkWcX9Qjd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Strade, Helmut, 1942- |t Simple Lie algebras over fields of positive characteristic. I, Structure theory. |d New York : Walter de Gruyter, 2004 |z 3110142112 |z 9783110142112 |w (DLC) 2004043901 |w (OCoLC)54460444 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 38. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281595 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL314059 | ||
938 | |a EBSCOhost |b EBSC |n 281595 | ||
938 | |a YBP Library Services |b YANK |n 2760820 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn435620160 |
---|---|
_version_ | 1816881697462943744 |
adam_text | |
any_adam_object | |
author | Strade, Helmut, 1942- |
author_GND | http://id.loc.gov/authorities/names/n86008393 |
author_facet | Strade, Helmut, 1942- |
author_role | |
author_sort | Strade, Helmut, 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .S78eb vol. 1 |
callnumber-search | QA252.3 .S78eb vol. 1 |
callnumber-sort | QA 3252.3 S78 EB VOL 11 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index. |
ctrlnum | (OCoLC)435620160 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03381cam a2200505 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn435620160</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090902s2004 nyua ob 001 0 ger d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">NLGGC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">191246194</subfield><subfield code="a">935264246</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110197945</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110197944</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)435620160</subfield><subfield code="z">(OCoLC)191246194</subfield><subfield code="z">(OCoLC)935264246</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.S78eb vol. 1</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut,</subfield><subfield code="d">1942-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86008393</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Lie algebras over fields of positive characteristic.</subfield><subfield code="n">I,</subfield><subfield code="p">Structure theory /</subfield><subfield code="c">by Helmut Strade.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Structure theory</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">2004.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 540 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">38</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 527-537) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Structure theory I Simple Lie algebras over fields of positive characteristic (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCH34pqRTbTjRxwkWcX9Qjd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Strade, Helmut, 1942-</subfield><subfield code="t">Simple Lie algebras over fields of positive characteristic. I, Structure theory.</subfield><subfield code="d">New York : Walter de Gruyter, 2004</subfield><subfield code="z">3110142112</subfield><subfield code="z">9783110142112</subfield><subfield code="w">(DLC) 2004043901</subfield><subfield code="w">(OCoLC)54460444</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">38.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281595</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL314059</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">281595</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2760820</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn435620160 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:50Z |
institution | BVB |
isbn | 9783110197945 3110197944 |
language | German |
oclc_num | 435620160 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 540 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Strade, Helmut, 1942- http://id.loc.gov/authorities/names/n86008393 Simple Lie algebras over fields of positive characteristic. I, Structure theory / by Helmut Strade. Structure theory New York : Walter de Gruyter, 2004. 1 online resource (viii, 540 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics ; 38 Includes bibliographical references (pages 527-537) and index. Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index. The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p & 0 is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p & 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. Print version record. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast has work: Structure theory I Simple Lie algebras over fields of positive characteristic (Text) https://id.oclc.org/worldcat/entity/E39PCH34pqRTbTjRxwkWcX9Qjd https://id.oclc.org/worldcat/ontology/hasWork Print version: Strade, Helmut, 1942- Simple Lie algebras over fields of positive characteristic. I, Structure theory. New York : Walter de Gruyter, 2004 3110142112 9783110142112 (DLC) 2004043901 (OCoLC)54460444 De Gruyter expositions in mathematics ; 38. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281595 Volltext |
spellingShingle | Strade, Helmut, 1942- Simple Lie algebras over fields of positive characteristic. De Gruyter expositions in mathematics ; Simple Lie Algebras over Fieldsof Positive Characteristic; Contents; Introduction; Chapter 1Toral subalgebras in p-envelopes; Chapter 2Lie algebras of special derivations; Chapter 3Derivation simple algebras and modules; Chapter 4Simple Lie algebras; Chapter 5Recognition theorems; Chapter 6The isomorphism problem; Chapter 7Structure of simple Lie algebras; Chapter 8Pairings of induced modules; Chapter 9Toral rank 1 Lie algebras; Notation; Bibliography; Index. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 |
title | Simple Lie algebras over fields of positive characteristic. |
title_alt | Structure theory |
title_auth | Simple Lie algebras over fields of positive characteristic. |
title_exact_search | Simple Lie algebras over fields of positive characteristic. |
title_full | Simple Lie algebras over fields of positive characteristic. I, Structure theory / by Helmut Strade. |
title_fullStr | Simple Lie algebras over fields of positive characteristic. I, Structure theory / by Helmut Strade. |
title_full_unstemmed | Simple Lie algebras over fields of positive characteristic. I, Structure theory / by Helmut Strade. |
title_short | Simple Lie algebras over fields of positive characteristic. |
title_sort | simple lie algebras over fields of positive characteristic structure theory |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast |
topic_facet | Lie algebras. Algèbres de Lie. MATHEMATICS Algebra Linear. Lie algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=281595 |
work_keys_str_mv | AT stradehelmut simpleliealgebrasoverfieldsofpositivecharacteristici AT stradehelmut structuretheory |