Differential and integral inequalities :: theory and applications. Volume I, Ordinary differential equations /
Differential and integral inequalities; theory and applications PART A: Ordinary differential equations.
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1969.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 55. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Zusammenfassung: | Differential and integral inequalities; theory and applications PART A: Ordinary differential equations. |
Beschreibung: | 1 online resource (ix, 390 pages) |
Bibliographie: | Includes bibliographical references (pages 355-384) and indexes. |
ISBN: | 9780080955636 0080955630 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn428095231 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090728s1969 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d EBLCP |d IDEBK |d OCLCQ |d MHW |d OCLCQ |d OPELS |d OCLCF |d UKDOC |d OCLCQ |d NLGGC |d UA@ |d YDXCP |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d S9I |d STF |d LEAUB |d M8D |d OCLCQ |d OCLCA |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 907195867 |a 935268404 | ||
020 | |a 9780080955636 |q (electronic bk.) | ||
020 | |a 0080955630 |q (electronic bk.) | ||
035 | |a (OCoLC)428095231 |z (OCoLC)907195867 |z (OCoLC)935268404 | ||
050 | 4 | |a QA295 |b .D54eb vol. 1 | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.26 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Differential and integral inequalities : |b theory and applications. |n Volume I, |p Ordinary differential equations / |c edited by V. Lakshmikantham and S. Leela. |
246 | 3 | 0 | |a Ordinary differential equations |
260 | |a New York : |b Academic Press, |c 1969. | ||
300 | |a 1 online resource (ix, 390 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 55 | |
504 | |a Includes bibliographical references (pages 355-384) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities. | |
505 | 8 | |a 1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes. | |
505 | 8 | |a Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates. | |
505 | 8 | |a 3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems. | |
505 | 8 | |a 5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index. | |
520 | |a Differential and integral inequalities; theory and applications PART A: Ordinary differential equations. | ||
650 | 0 | |a Inequalities (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85065985 | |
650 | 6 | |a Inégalités (Mathématiques) | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Inequalities (Mathematics) |2 fast | |
700 | 1 | |a Lakshmikantham, V., |d 1926-2012. |1 https://id.oclc.org/worldcat/entity/E39PBJh4xDkWxv4CWJ6trPKWXd | |
700 | 1 | |a Leela, S. |0 http://id.loc.gov/authorities/names/n82032762 | |
758 | |i has work: |a Ordinary differential equations Differential and integral inequalities Volume I (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGVCXqFmT67Gc9bGJp9BCP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Differential and integral inequalities. |d New York : Academic Press, 1969 |z 9780124341012 |w (OCoLC)181657079 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 55. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2268734 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297110 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/55/part/P1 |3 Volltext |
938 | |a 123Library |b 123L |n 43851 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL453052 | ||
938 | |a EBSCOhost |b EBSC |n 297110 | ||
938 | |a YBP Library Services |b YANK |n 3101792 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn428095231 |
---|---|
_version_ | 1816881695161319424 |
adam_text | |
any_adam_object | |
author2 | Lakshmikantham, V., 1926-2012 Leela, S. |
author2_role | |
author2_variant | v l vl s l sl |
author_GND | http://id.loc.gov/authorities/names/n82032762 |
author_facet | Lakshmikantham, V., 1926-2012 Leela, S. |
author_sort | Lakshmikantham, V., 1926-2012 |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA295 |
callnumber-raw | QA295 .D54eb vol. 1 |
callnumber-search | QA295 .D54eb vol. 1 |
callnumber-sort | QA 3295 D54 EB VOL 11 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities. 1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes. Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates. 3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems. 5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index. |
ctrlnum | (OCoLC)428095231 |
dewey-full | 515/.26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.26 |
dewey-search | 515/.26 |
dewey-sort | 3515 226 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05699cam a2200637 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn428095231</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090728s1969 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UKDOC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">UA@</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">S9I</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">907195867</subfield><subfield code="a">935268404</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080955636</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080955630</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)428095231</subfield><subfield code="z">(OCoLC)907195867</subfield><subfield code="z">(OCoLC)935268404</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA295</subfield><subfield code="b">.D54eb vol. 1</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.26</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Differential and integral inequalities :</subfield><subfield code="b">theory and applications.</subfield><subfield code="n">Volume I,</subfield><subfield code="p">Ordinary differential equations /</subfield><subfield code="c">edited by V. Lakshmikantham and S. Leela.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Ordinary differential equations</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1969.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 390 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 55</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 355-384) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Differential and integral inequalities; theory and applications PART A: Ordinary differential equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85065985</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Inégalités (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inequalities (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lakshmikantham, V.,</subfield><subfield code="d">1926-2012.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJh4xDkWxv4CWJ6trPKWXd</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leela, S.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82032762</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Ordinary differential equations Differential and integral inequalities Volume I (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGVCXqFmT67Gc9bGJp9BCP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Differential and integral inequalities.</subfield><subfield code="d">New York : Academic Press, 1969</subfield><subfield code="z">9780124341012</subfield><subfield code="w">(OCoLC)181657079</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 55.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2268734</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297110</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/55/part/P1</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">123Library</subfield><subfield code="b">123L</subfield><subfield code="n">43851</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL453052</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297110</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101792</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn428095231 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:48Z |
institution | BVB |
isbn | 9780080955636 0080955630 |
language | English |
oclc_num | 428095231 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 390 pages) |
psigel | ZDB-4-EBA |
publishDate | 1969 |
publishDateSearch | 1969 |
publishDateSort | 1969 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Differential and integral inequalities : theory and applications. Volume I, Ordinary differential equations / edited by V. Lakshmikantham and S. Leela. Ordinary differential equations New York : Academic Press, 1969. 1 online resource (ix, 390 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file Mathematics in science and engineering ; v. 55 Includes bibliographical references (pages 355-384) and indexes. Print version record. Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities. 1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes. Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates. 3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems. 5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index. Differential and integral inequalities; theory and applications PART A: Ordinary differential equations. Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Inégalités (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inequalities (Mathematics) fast Lakshmikantham, V., 1926-2012. https://id.oclc.org/worldcat/entity/E39PBJh4xDkWxv4CWJ6trPKWXd Leela, S. http://id.loc.gov/authorities/names/n82032762 has work: Ordinary differential equations Differential and integral inequalities Volume I (Text) https://id.oclc.org/worldcat/entity/E39PCGVCXqFmT67Gc9bGJp9BCP https://id.oclc.org/worldcat/ontology/hasWork Print version: Differential and integral inequalities. New York : Academic Press, 1969 9780124341012 (OCoLC)181657079 Mathematics in science and engineering ; v. 55. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2268734 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297110 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/55/part/P1 Volltext |
spellingShingle | Differential and integral inequalities : theory and applications. Mathematics in science and engineering ; Front Cover; Differential and Integral Inequalities: Theory and Applications; Copyright Page; Contents; Preface; PART 1: ORDINARY DIFFERENTIAL EQUATIONS; Chapter 1.; 1.0. Introduction; 1.1. Existence and Continuation of Solutions; 1.2. Scalar Differential Inequalities; 1.3. Maximal and Minimal Solutions; 1.4. Comparison Theorems; 1.5. Finite Systems of Differential Inequalities; 1.6. Minimax Solutions; 1.7. Further Comparison Theorems; 1.8. Infinite Systems of Differential Inequalities; 1.9. Integral Inequalities Reducible to Differential Inequalities. 1.10. Differential Inequalities in the Sense of Caratheodory1.11. Notes; Chapter 2.; 2.0. Introduction; 2.1. Global Existence; 2.2. Uniqueness; 2.3. Convergence of Successive Approximations; 2.4. Chaplygin's Method; 2.5. Dependence on Initial Conditions and Parameters; 2.6. Variation of Constants; 2.7. Upper and Lower Bounds; 2.8. Componentwise Bounds; 2.9. Asymptotic Equilibrium; 2.10. Asymptotic Equivalence; 2.11. A Topological Principle; 2.12. Applications of Topological Principle; 2.13. Stability Criteria; 2.14. Asymptotic Behavior; 2.15 Periodic and Almost Periodic Systems; 2.16. Notes. Chapter 3.3.0. Introduction; 3.1. Basic Comparison Theorems; 3.2. Definitions; 3.3. Stability; 3.4. Asymptotic Stability; 3.5. Stability of Perturbed Systems; 3.6. Converse Theorems; 3.7. Stability by the First Approximation; 3.8. Total Stability; 3.9. Integral Stability; 3.10. L""-Stability; 3.11. Partial Stability; 3.12. Stability of Differential Inequalities; 3.13. Boundcdness and Lagrange Stability; 3.14. Eventual Stability; 3.15. Asymptotic Behavior; 3.16. Relative Stability; 3.17. Stability with Respect to a Manifold; 3.18. Almost Periodic Systems; 3.19. Uniqueness and Estimates. 3.20. Continuous Dependence and the Method of Averaging3.21. Notes; Chapter 4.; 4.0. Introduction; 4.1. Main Comparison Theorem; 4.2. Asymptotic Stability; 4.3. Instability; 4.4. Conditional Stability and Boundedness; 4.5. Converse Theorems; 4.6. Stability in Tube-like Domain; 4.7. Stability of Asymptotically Self-Invariant Sets; 4.8. Stability of Conditionally Invariant Sets; 4.9. Existence and Stability of Stationary Points; 4.10. Notes; PART 2: VOLTERRA INTEGRAL EQUATIONS; Chapter 5.; 5.0. Introduction; 5.1. Integral Inequalities; 5.2. Local and Global Existence; 5.3. Comparison Theorems. 5.4. Approximate Solutions, Bounds, and Uniqueness5.5. Asymptotic Behavior; 5.6. Perturbed Integral Equations; 5.7. Admissibility and Asymptotic Behavior; 5.8. Integrodifferential Inequalities; 5.9. Notes; Bibliography; Author Index; Subject Index. Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Inégalités (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inequalities (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85065985 |
title | Differential and integral inequalities : theory and applications. |
title_alt | Ordinary differential equations |
title_auth | Differential and integral inequalities : theory and applications. |
title_exact_search | Differential and integral inequalities : theory and applications. |
title_full | Differential and integral inequalities : theory and applications. Volume I, Ordinary differential equations / edited by V. Lakshmikantham and S. Leela. |
title_fullStr | Differential and integral inequalities : theory and applications. Volume I, Ordinary differential equations / edited by V. Lakshmikantham and S. Leela. |
title_full_unstemmed | Differential and integral inequalities : theory and applications. Volume I, Ordinary differential equations / edited by V. Lakshmikantham and S. Leela. |
title_short | Differential and integral inequalities : |
title_sort | differential and integral inequalities theory and applications ordinary differential equations |
title_sub | theory and applications. |
topic | Inequalities (Mathematics) http://id.loc.gov/authorities/subjects/sh85065985 Inégalités (Mathématiques) MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Inequalities (Mathematics) fast |
topic_facet | Inequalities (Mathematics) Inégalités (Mathématiques) MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2268734 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297110 https://www.sciencedirect.com/science/bookseries/00765392/55/part/P1 |
work_keys_str_mv | AT lakshmikanthamv differentialandintegralinequalitiestheoryandapplicationsvolumei AT leelas differentialandintegralinequalitiestheoryandapplicationsvolumei AT lakshmikanthamv ordinarydifferentialequations AT leelas ordinarydifferentialequations |