Positive definite matrices /:
This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and co.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J. :
Princeton University Press,
©2007.
|
Schriftenreihe: | Princeton series in applied mathematics.
|
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and co. |
Beschreibung: | 1 online resource (ix, 254 pages) |
Bibliographie: | Includes bibliographical references (pages 237-245) and index. |
ISBN: | 9781400827787 1400827787 1282129740 9781282129740 9786612129742 6612129743 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn330822909 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090520s2007 nju ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d EBLCP |d IDEBK |d E7B |d OCLCQ |d REDDC |d OCLCQ |d OCLCO |d OCLCQ |d DEBSZ |d JSTOR |d OCLCF |d UMI |d DEBBG |d OCLCQ |d YDXCP |d AU@ |d COO |d OCLCQ |d AZK |d AGLDB |d UIU |d MOR |d PIFAG |d OTZ |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d JBG |d IOG |d U3W |d EZ9 |d STF |d WRM |d VTS |d CEF |d NRAMU |d ICG |d INT |d REC |d VT2 |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d DKC |d OCLCQ |d C6I |d OCLCQ |d VLY |d MM9 |d CUS |d UWK |d IEEEE |d OCLCO |d DKU |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ |d NUI | ||
015 | |a GBA710006 |2 bnb | ||
016 | 7 | |z 013660820 |2 Uk | |
019 | |a 437140419 |a 646805533 |a 746472028 |a 781298123 |a 815778977 |a 870550951 |a 961547761 |a 962601160 |a 1162556879 | ||
020 | |a 9781400827787 |q (electronic bk.) | ||
020 | |a 1400827787 |q (electronic bk.) | ||
020 | |a 1282129740 | ||
020 | |a 9781282129740 | ||
020 | |a 9786612129742 | ||
020 | |a 6612129743 | ||
020 | |z 0691129185 |q (alk. paper) | ||
020 | |z 9780691129181 |q (alk. paper) | ||
024 | 7 | |a 10.1515/9781400827787 |2 doi | |
035 | |a (OCoLC)330822909 |z (OCoLC)437140419 |z (OCoLC)646805533 |z (OCoLC)746472028 |z (OCoLC)781298123 |z (OCoLC)815778977 |z (OCoLC)870550951 |z (OCoLC)961547761 |z (OCoLC)962601160 |z (OCoLC)1162556879 | ||
037 | |a 22573/cttw0tt |b JSTOR | ||
037 | |a 9452503 |b IEEE | ||
050 | 4 | |a QA188 |b .B43 2007eb | |
072 | 7 | |a MAT |x 019000 |2 bisacsh | |
072 | 7 | |a MAT012030 |2 bisacsh | |
072 | 7 | |a MAT019000 |2 bisacsh | |
072 | 7 | |a MAT037000 |2 bisacsh | |
072 | 7 | |a PBKG |2 bicssc | |
082 | 7 | |a 512.9/434 |2 22 | |
084 | |a SK 220 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Bhatia, Rajendra, |d 1952- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq |0 http://id.loc.gov/authorities/names/n82058270 | |
245 | 1 | 0 | |a Positive definite matrices / |c Rajendra Bhatia. |
260 | |a Princeton, N.J. : |b Princeton University Press, |c ©2007. | ||
300 | |a 1 online resource (ix, 254 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Princeton series in applied mathematics | |
504 | |a Includes bibliographical references (pages 237-245) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Positive matrices -- Positive linear maps -- Completely positive maps -- Matrix means -- Positive definite functions -- Geometry of positive matrices. | |
520 | |a This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and co. | ||
546 | |a In English. | ||
650 | 0 | |a Matrices. |0 http://id.loc.gov/authorities/subjects/sh85082210 | |
650 | 6 | |a Matrices. | |
650 | 7 | |a MATHEMATICS |x Matrices. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x Differential. |2 bisacsh | |
650 | 7 | |a Matrices |2 fast | |
653 | |a Addition. | ||
653 | |a Analytic continuation. | ||
653 | |a Arithmetic mean. | ||
653 | |a Banach space. | ||
653 | |a Binomial theorem. | ||
653 | |a Block matrix. | ||
653 | |a Bochner's theorem. | ||
653 | |a Calculation. | ||
653 | |a Cauchy matrix. | ||
653 | |a Cauchy-Schwarz inequality. | ||
653 | |a Characteristic polynomial. | ||
653 | |a Coefficient. | ||
653 | |a Commutative property. | ||
653 | |a Compact space. | ||
653 | |a Completely positive map. | ||
653 | |a Complex number. | ||
653 | |a Computation. | ||
653 | |a Continuous function. | ||
653 | |a Convex combination. | ||
653 | |a Convex function. | ||
653 | |a Convex set. | ||
653 | |a Corollary. | ||
653 | |a Density matrix. | ||
653 | |a Diagonal matrix. | ||
653 | |a Differential geometry. | ||
653 | |a Eigenvalues and eigenvectors. | ||
653 | |a Equation. | ||
653 | |a Equivalence relation. | ||
653 | |a Existential quantification. | ||
653 | |a Extreme point. | ||
653 | |a Fourier transform. | ||
653 | |a Functional analysis. | ||
653 | |a Fundamental theorem. | ||
653 | |a G. H. Hardy. | ||
653 | |a Gamma function. | ||
653 | |a Geometric mean. | ||
653 | |a Geometry. | ||
653 | |a Hadamard product (matrices). | ||
653 | |a Hahn-Banach theorem. | ||
653 | |a Harmonic analysis. | ||
653 | |a Hermitian matrix. | ||
653 | |a Hilbert space. | ||
653 | |a Hyperbolic function. | ||
653 | |a Infimum and supremum. | ||
653 | |a Infinite divisibility (probability). | ||
653 | |a Invertible matrix. | ||
653 | |a Lecture. | ||
653 | |a Linear algebra. | ||
653 | |a Linear map. | ||
653 | |a Logarithm. | ||
653 | |a Logarithmic mean. | ||
653 | |a Mathematics. | ||
653 | |a Matrix (mathematics). | ||
653 | |a Matrix analysis. | ||
653 | |a Matrix unit. | ||
653 | |a Metric space. | ||
653 | |a Monotonic function. | ||
653 | |a Natural number. | ||
653 | |a Open set. | ||
653 | |a Operator algebra. | ||
653 | |a Operator system. | ||
653 | |a Orthonormal basis. | ||
653 | |a Partial trace. | ||
653 | |a Positive definiteness. | ||
653 | |a Positive element. | ||
653 | |a Positive map. | ||
653 | |a Positive semidefinite. | ||
653 | |a Positive-definite function. | ||
653 | |a Positive-definite matrix. | ||
653 | |a Probability measure. | ||
653 | |a Probability. | ||
653 | |a Projection (linear algebra). | ||
653 | |a Quantity. | ||
653 | |a Quantum computing. | ||
653 | |a Quantum information. | ||
653 | |a Quantum statistical mechanics. | ||
653 | |a Real number. | ||
653 | |a Riccati equation. | ||
653 | |a Riemannian geometry. | ||
653 | |a Riemannian manifold. | ||
653 | |a Riesz representation theorem. | ||
653 | |a Right half-plane. | ||
653 | |a Schur complement. | ||
653 | |a Schur's theorem. | ||
653 | |a Scientific notation. | ||
653 | |a Self-adjoint operator. | ||
653 | |a Sign (mathematics). | ||
653 | |a Special case. | ||
653 | |a Spectral theorem. | ||
653 | |a Square root. | ||
653 | |a Standard basis. | ||
653 | |a Summation. | ||
653 | |a Tensor product. | ||
653 | |a Theorem. | ||
653 | |a Toeplitz matrix. | ||
653 | |a Unit vector. | ||
653 | |a Unitary matrix. | ||
653 | |a Unitary operator. | ||
653 | |a Upper half-plane. | ||
653 | |a Variable (mathematics). | ||
758 | |i has work: |a Positive definite matrices (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGPYVWyQJ7kWFc4kBkXBKd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Bhatia, Rajendra, 1952- |t Positive definite matrices. |d Princeton, N.J. : Princeton University Press, ©2007 |z 0691129185 |z 9780691129181 |w (DLC) 2006050375 |w (OCoLC)70668921 |
830 | 0 | |a Princeton series in applied mathematics. |0 http://id.loc.gov/authorities/names/no2002046464 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=273046 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=273046 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL445446 | ||
938 | |a ebrary |b EBRY |n ebr10284074 | ||
938 | |a EBSCOhost |b EBSC |n 273046 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 212974 | ||
938 | |a YBP Library Services |b YANK |n 3000944 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn330822909 |
---|---|
_version_ | 1826941605033017344 |
adam_text | |
any_adam_object | |
author | Bhatia, Rajendra, 1952- |
author_GND | http://id.loc.gov/authorities/names/n82058270 |
author_facet | Bhatia, Rajendra, 1952- |
author_role | aut |
author_sort | Bhatia, Rajendra, 1952- |
author_variant | r b rb |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA188 |
callnumber-raw | QA188 .B43 2007eb |
callnumber-search | QA188 .B43 2007eb |
callnumber-sort | QA 3188 B43 42007EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 220 |
collection | ZDB-4-EBA |
contents | Positive matrices -- Positive linear maps -- Completely positive maps -- Matrix means -- Positive definite functions -- Geometry of positive matrices. |
ctrlnum | (OCoLC)330822909 |
dewey-full | 512.9/434 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/434 |
dewey-search | 512.9/434 |
dewey-sort | 3512.9 3434 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07325cam a2201933 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn330822909</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090520s2007 nju ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UMI</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">AU@</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UIU</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">C6I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">MM9</subfield><subfield code="d">CUS</subfield><subfield code="d">UWK</subfield><subfield code="d">IEEEE</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DKU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NUI</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA710006</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="z">013660820</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">437140419</subfield><subfield code="a">646805533</subfield><subfield code="a">746472028</subfield><subfield code="a">781298123</subfield><subfield code="a">815778977</subfield><subfield code="a">870550951</subfield><subfield code="a">961547761</subfield><subfield code="a">962601160</subfield><subfield code="a">1162556879</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400827787</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400827787</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1282129740</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781282129740</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786612129742</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6612129743</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691129185</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691129181</subfield><subfield code="q">(alk. paper)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400827787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)330822909</subfield><subfield code="z">(OCoLC)437140419</subfield><subfield code="z">(OCoLC)646805533</subfield><subfield code="z">(OCoLC)746472028</subfield><subfield code="z">(OCoLC)781298123</subfield><subfield code="z">(OCoLC)815778977</subfield><subfield code="z">(OCoLC)870550951</subfield><subfield code="z">(OCoLC)961547761</subfield><subfield code="z">(OCoLC)962601160</subfield><subfield code="z">(OCoLC)1162556879</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/cttw0tt</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9452503</subfield><subfield code="b">IEEE</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA188</subfield><subfield code="b">.B43 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT019000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKG</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.9/434</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhatia, Rajendra,</subfield><subfield code="d">1952-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82058270</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Positive definite matrices /</subfield><subfield code="c">Rajendra Bhatia.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton, N.J. :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 254 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Princeton series in applied mathematics</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 237-245) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Positive matrices -- Positive linear maps -- Completely positive maps -- Matrix means -- Positive definite functions -- Geometry of positive matrices.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and co.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Matrices.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082210</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matrices.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Matrices.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Differential.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Matrices</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Addition.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytic continuation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Arithmetic mean.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Binomial theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Block matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bochner's theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Calculation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cauchy matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cauchy-Schwarz inequality.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Characteristic polynomial.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Coefficient.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Commutative property.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Compact space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Completely positive map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Complex number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Continuous function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex combination.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Convex set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Corollary.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Density matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diagonal matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Eigenvalues and eigenvectors.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Equivalence relation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Existential quantification.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Extreme point.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fourier transform.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Functional analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Fundamental theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">G. H. Hardy.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gamma function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometric mean.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hadamard product (matrices).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hahn-Banach theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Harmonic analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hermitian matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hilbert space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hyperbolic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infimum and supremum.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Infinite divisibility (probability).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Invertible matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Lecture.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Linear map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Logarithm.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Logarithmic mean.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix analysis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Matrix unit.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Metric space.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Monotonic function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Natural number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Open set.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Operator algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Operator system.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Orthonormal basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Partial trace.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive definiteness.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive element.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive map.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive semidefinite.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive-definite function.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Positive-definite matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability measure.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Probability.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Projection (linear algebra).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantity.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum computing.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum information.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum statistical mechanics.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Real number.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riccati equation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemannian geometry.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riemannian manifold.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riesz representation theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Right half-plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Schur complement.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Schur's theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific notation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Self-adjoint operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sign (mathematics).</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Special case.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Spectral theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Square root.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Standard basis.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Summation.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Tensor product.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Theorem.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Toeplitz matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unit vector.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unitary matrix.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Unitary operator.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Upper half-plane.</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Variable (mathematics).</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Positive definite matrices (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGPYVWyQJ7kWFc4kBkXBKd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Bhatia, Rajendra, 1952-</subfield><subfield code="t">Positive definite matrices.</subfield><subfield code="d">Princeton, N.J. : Princeton University Press, ©2007</subfield><subfield code="z">0691129185</subfield><subfield code="z">9780691129181</subfield><subfield code="w">(DLC) 2006050375</subfield><subfield code="w">(OCoLC)70668921</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Princeton series in applied mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2002046464</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=273046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=273046</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL445446</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10284074</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">273046</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">212974</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3000944</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn330822909 |
illustrated | Not Illustrated |
indexdate | 2025-03-18T14:14:46Z |
institution | BVB |
isbn | 9781400827787 1400827787 1282129740 9781282129740 9786612129742 6612129743 |
language | English |
oclc_num | 330822909 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 254 pages) |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton University Press, |
record_format | marc |
series | Princeton series in applied mathematics. |
series2 | Princeton series in applied mathematics |
spelling | Bhatia, Rajendra, 1952- author. https://id.oclc.org/worldcat/entity/E39PBJkMMWgg9dFHrkh8FTtYfq http://id.loc.gov/authorities/names/n82058270 Positive definite matrices / Rajendra Bhatia. Princeton, N.J. : Princeton University Press, ©2007. 1 online resource (ix, 254 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Princeton series in applied mathematics Includes bibliographical references (pages 237-245) and index. Print version record. Positive matrices -- Positive linear maps -- Completely positive maps -- Matrix means -- Positive definite functions -- Geometry of positive matrices. This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and co. In English. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh MATHEMATICS Geometry Differential. bisacsh Matrices fast Addition. Analytic continuation. Arithmetic mean. Banach space. Binomial theorem. Block matrix. Bochner's theorem. Calculation. Cauchy matrix. Cauchy-Schwarz inequality. Characteristic polynomial. Coefficient. Commutative property. Compact space. Completely positive map. Complex number. Computation. Continuous function. Convex combination. Convex function. Convex set. Corollary. Density matrix. Diagonal matrix. Differential geometry. Eigenvalues and eigenvectors. Equation. Equivalence relation. Existential quantification. Extreme point. Fourier transform. Functional analysis. Fundamental theorem. G. H. Hardy. Gamma function. Geometric mean. Geometry. Hadamard product (matrices). Hahn-Banach theorem. Harmonic analysis. Hermitian matrix. Hilbert space. Hyperbolic function. Infimum and supremum. Infinite divisibility (probability). Invertible matrix. Lecture. Linear algebra. Linear map. Logarithm. Logarithmic mean. Mathematics. Matrix (mathematics). Matrix analysis. Matrix unit. Metric space. Monotonic function. Natural number. Open set. Operator algebra. Operator system. Orthonormal basis. Partial trace. Positive definiteness. Positive element. Positive map. Positive semidefinite. Positive-definite function. Positive-definite matrix. Probability measure. Probability. Projection (linear algebra). Quantity. Quantum computing. Quantum information. Quantum statistical mechanics. Real number. Riccati equation. Riemannian geometry. Riemannian manifold. Riesz representation theorem. Right half-plane. Schur complement. Schur's theorem. Scientific notation. Self-adjoint operator. Sign (mathematics). Special case. Spectral theorem. Square root. Standard basis. Summation. Tensor product. Theorem. Toeplitz matrix. Unit vector. Unitary matrix. Unitary operator. Upper half-plane. Variable (mathematics). has work: Positive definite matrices (Text) https://id.oclc.org/worldcat/entity/E39PCGPYVWyQJ7kWFc4kBkXBKd https://id.oclc.org/worldcat/ontology/hasWork Print version: Bhatia, Rajendra, 1952- Positive definite matrices. Princeton, N.J. : Princeton University Press, ©2007 0691129185 9780691129181 (DLC) 2006050375 (OCoLC)70668921 Princeton series in applied mathematics. http://id.loc.gov/authorities/names/no2002046464 |
spellingShingle | Bhatia, Rajendra, 1952- Positive definite matrices / Princeton series in applied mathematics. Positive matrices -- Positive linear maps -- Completely positive maps -- Matrix means -- Positive definite functions -- Geometry of positive matrices. Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh MATHEMATICS Geometry Differential. bisacsh Matrices fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082210 |
title | Positive definite matrices / |
title_auth | Positive definite matrices / |
title_exact_search | Positive definite matrices / |
title_full | Positive definite matrices / Rajendra Bhatia. |
title_fullStr | Positive definite matrices / Rajendra Bhatia. |
title_full_unstemmed | Positive definite matrices / Rajendra Bhatia. |
title_short | Positive definite matrices / |
title_sort | positive definite matrices |
topic | Matrices. http://id.loc.gov/authorities/subjects/sh85082210 Matrices. MATHEMATICS Matrices. bisacsh MATHEMATICS Geometry Differential. bisacsh Matrices fast |
topic_facet | Matrices. MATHEMATICS Matrices. MATHEMATICS Geometry Differential. Matrices |
work_keys_str_mv | AT bhatiarajendra positivedefinitematrices |