A compendium of partial differential equation models :: method of lines analysis with Matlab /
Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2009.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model. |
Beschreibung: | 1 online resource (xiii, 474 pages, 2 unnumbered pages of plates) : illustrations (some color) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780521519861 0521519861 9780511504969 0511504969 9780511508530 0511508530 9780511507878 0511507879 9780511576270 0511576277 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn320896678 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 090513s2009 enkaf ob 001 0 eng d | ||
040 | |a OSU |b eng |e pn |c OSU |d CDX |d OCLCQ |d N$T |d E7B |d OCLCQ |d UBC |d IDEBK |d OCLCQ |d REDDC |d OCLCQ |d CUS |d OCLCQ |d DEBSZ |d YDXCP |d OCLCQ |d NNO |d OCLCQ |d HEBIS |d OCLCO |d OCLCF |d STF |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB | ||
019 | |a 320902671 |a 607374710 |a 647697990 |a 741249265 |a 990712483 | ||
020 | |a 9780521519861 |q (hardback) | ||
020 | |a 0521519861 |q (hardback) | ||
020 | |a 9780511504969 |q (ebook) | ||
020 | |a 0511504969 |q (ebook) | ||
020 | |a 9780511508530 |q (electronic bk.) | ||
020 | |a 0511508530 |q (electronic bk.) | ||
020 | |a 9780511507878 | ||
020 | |a 0511507879 | ||
020 | |a 9780511576270 | ||
020 | |a 0511576277 | ||
035 | |a (OCoLC)320896678 |z (OCoLC)320902671 |z (OCoLC)607374710 |z (OCoLC)647697990 |z (OCoLC)741249265 |z (OCoLC)990712483 | ||
037 | |a 205865 |b MIL | ||
050 | 4 | |a QA377 |b .S3538 2009 | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
072 | 7 | |a PBKJ |2 bicssc | |
082 | 7 | |a 515/.353 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Schiesser, W. E. |0 http://id.loc.gov/authorities/names/n87121164 | |
245 | 1 | 2 | |a A compendium of partial differential equation models : |b method of lines analysis with Matlab / |c William E. Schiesser, Graham W. Griffiths. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2009. | ||
300 | |a 1 online resource (xiii, 474 pages, 2 unnumbered pages of plates) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Cover -- Dedication -- Contents -- Preface -- 1 An Introduction to the Method of Lines -- SOME PDE BASICS -- INITIAL AND BOUNDARY CONDITIONS -- TYPES OF PDE SOLUTIONS -- PDE SUBSCRIPT NOTATION -- A GENERAL PDE SYSTEM -- PDE GEOMETRIC CLASSIFICATION -- ELEMENTS OF THE MOL -- ODE INTEGRATION WITHIN THE MOL -- NUMERICAL DIFFUSION AND OSCILLATION -- DIFFERENTIAL ALGEBRAIC EQUATIONS -- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS -- h- AND p-REFINEMENT -- ORIGIN OF THE NAME 8220;METHOD OF LINES8221; -- SOURCES OF ODE/DAE INTEGRATORS -- REFERENCES -- 2 A One-Dimensional, Linear Partial Differential Equation -- 3 Greens Function Analysis -- APPENDIX A -- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1) -- A.2. The Function simp -- REFERENCES -- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations -- REFERENCE -- 5 Euler, Navier Stokes, and Burgers Equations -- REFERENCE -- 6 The Cubic Schr246;dinger Equation -- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION -- A.1. Introduction -- A.2. A Nonrigorous derivation -- REFERENCES -- 7 The KortewegdeVries Equation -- APPENDIX A -- A.1. FD Routine uxxx7c -- APPENDIX B -- B.1. Jacobian Matrix Routine jpattern_num -- APPENDIX C -- C.1. Some Background to the KdV Equation -- REFERENCES -- 8 The Linear Wave Equation -- APPENDIX A -- A.1. ODE Routines pde_1, pde_2, pde_3 -- REFERENCES -- 9 Maxwells Equations -- 10 Elliptic Partial Differential Equations: Laplaces Equation -- REFERENCES -- 11 Three-Dimensional Partial Differential Equation -- 12 Partial Differential Equation with a Mixed Partial Derivative -- REFERENCE -- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates -- APPENDIX A -- A.1. Units Check for Eqs. (13.1)(13.13) -- REFERENCES -- 14 Diffusion Equation in Spherical Coordinates -- REFERENCES -- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation -- REFERENCES -- APPENDIX 2 Order Conditions for Finite-Difference Approximations -- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations -- REFERENCES -- APPENDIX 4 Implementation of Time-Varying Boundary Conditions -- APPENDIX 5 The Differentiation in Space Subroutines Library -- FIRST-DERIVATIVE ROUTINES -- Argument List -- SECOND-DERIVATIVE ROUTINES -- Argument List -- HIGHER-ORDER AND MIXED DERIVATIVES -- OBTAINING THE DSS LIBRARY -- APPENDIX 6 Animating Simulation Results -- GENERAL -- MATLAB MOVIE -- BASIC EXAMPLE -- AVI MOVIES -- EXAMPLE BURGERS EQUATION MOVIE -- EXAMPLE SCHR214;DINGER EQUATION MOVIE -- EXAMPLE KdV EQUATION MOVIE -- ANIMATED GIF FILES -- EXAMPLE 3D LAPLACE EQUATION MOVIE -- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE -- REFERENCES -- Index. | |
520 | |a Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model. | ||
588 | 0 | |a Print version record. | |
630 | 0 | 0 | |a MATLAB. |0 http://id.loc.gov/authorities/names/n92036881 |
630 | 0 | 7 | |a MATLAB |2 fast |
650 | 0 | |a Differential equations, Partial |x Mathematical models. | |
650 | 6 | |a Équations aux dérivées partielles |x Modèles mathématiques. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Partielle Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4044779-0 | |
650 | 7 | |a MATLAB |2 gnd |0 http://d-nb.info/gnd/4329066-8 | |
650 | 7 | |a Numerisches Verfahren |2 gnd |0 http://d-nb.info/gnd/4128130-5 | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Griffiths, Graham W. |0 http://id.loc.gov/authorities/names/n2008071381 | |
758 | |i has work: |a A compendium of partial differential equation models (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFx6GQ9JTXyPrGrD6pxr4m |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 1 | |a Schiesser, W.E. |t Compendium of partial differential equation models. |d Cambridge ; New York : Cambridge University Press, 2009 |z 9780521519861 |w (DLC) 2008045816 |w (OCoLC)263409317 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=271007 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 10149298 | ||
938 | |a ebrary |b EBRY |n ebr10289284 | ||
938 | |a EBSCOhost |b EBSC |n 271007 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 205865 | ||
938 | |a YBP Library Services |b YANK |n 3050455 | ||
938 | |a YBP Library Services |b YANK |n 3014416 | ||
938 | |a YBP Library Services |b YANK |n 3033515 | ||
938 | |a YBP Library Services |b YANK |n 3277617 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn320896678 |
---|---|
_version_ | 1816881691822653440 |
adam_text | |
any_adam_object | |
author | Schiesser, W. E. |
author2 | Griffiths, Graham W. |
author2_role | |
author2_variant | g w g gw gwg |
author_GND | http://id.loc.gov/authorities/names/n87121164 http://id.loc.gov/authorities/names/n2008071381 |
author_facet | Schiesser, W. E. Griffiths, Graham W. |
author_role | |
author_sort | Schiesser, W. E. |
author_variant | w e s we wes |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .S3538 2009 |
callnumber-search | QA377 .S3538 2009 |
callnumber-sort | QA 3377 S3538 42009 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Dedication -- Contents -- Preface -- 1 An Introduction to the Method of Lines -- SOME PDE BASICS -- INITIAL AND BOUNDARY CONDITIONS -- TYPES OF PDE SOLUTIONS -- PDE SUBSCRIPT NOTATION -- A GENERAL PDE SYSTEM -- PDE GEOMETRIC CLASSIFICATION -- ELEMENTS OF THE MOL -- ODE INTEGRATION WITHIN THE MOL -- NUMERICAL DIFFUSION AND OSCILLATION -- DIFFERENTIAL ALGEBRAIC EQUATIONS -- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS -- h- AND p-REFINEMENT -- ORIGIN OF THE NAME 8220;METHOD OF LINES8221; -- SOURCES OF ODE/DAE INTEGRATORS -- REFERENCES -- 2 A One-Dimensional, Linear Partial Differential Equation -- 3 Greens Function Analysis -- APPENDIX A -- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1) -- A.2. The Function simp -- REFERENCES -- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations -- REFERENCE -- 5 Euler, Navier Stokes, and Burgers Equations -- REFERENCE -- 6 The Cubic Schr246;dinger Equation -- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION -- A.1. Introduction -- A.2. A Nonrigorous derivation -- REFERENCES -- 7 The KortewegdeVries Equation -- APPENDIX A -- A.1. FD Routine uxxx7c -- APPENDIX B -- B.1. Jacobian Matrix Routine jpattern_num -- APPENDIX C -- C.1. Some Background to the KdV Equation -- REFERENCES -- 8 The Linear Wave Equation -- APPENDIX A -- A.1. ODE Routines pde_1, pde_2, pde_3 -- REFERENCES -- 9 Maxwells Equations -- 10 Elliptic Partial Differential Equations: Laplaces Equation -- REFERENCES -- 11 Three-Dimensional Partial Differential Equation -- 12 Partial Differential Equation with a Mixed Partial Derivative -- REFERENCE -- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates -- APPENDIX A -- A.1. Units Check for Eqs. (13.1)(13.13) -- REFERENCES -- 14 Diffusion Equation in Spherical Coordinates -- REFERENCES -- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation -- REFERENCES -- APPENDIX 2 Order Conditions for Finite-Difference Approximations -- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations -- REFERENCES -- APPENDIX 4 Implementation of Time-Varying Boundary Conditions -- APPENDIX 5 The Differentiation in Space Subroutines Library -- FIRST-DERIVATIVE ROUTINES -- Argument List -- SECOND-DERIVATIVE ROUTINES -- Argument List -- HIGHER-ORDER AND MIXED DERIVATIVES -- OBTAINING THE DSS LIBRARY -- APPENDIX 6 Animating Simulation Results -- GENERAL -- MATLAB MOVIE -- BASIC EXAMPLE -- AVI MOVIES -- EXAMPLE BURGERS EQUATION MOVIE -- EXAMPLE SCHR214;DINGER EQUATION MOVIE -- EXAMPLE KdV EQUATION MOVIE -- ANIMATED GIF FILES -- EXAMPLE 3D LAPLACE EQUATION MOVIE -- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE -- REFERENCES -- Index. |
ctrlnum | (OCoLC)320896678 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07290cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn320896678</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">090513s2009 enkaf ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OSU</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OSU</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UBC</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NNO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">320902671</subfield><subfield code="a">607374710</subfield><subfield code="a">647697990</subfield><subfield code="a">741249265</subfield><subfield code="a">990712483</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521519861</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521519861</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511504969</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511504969</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511508530</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511508530</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511507878</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511507879</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511576270</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511576277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)320896678</subfield><subfield code="z">(OCoLC)320902671</subfield><subfield code="z">(OCoLC)607374710</subfield><subfield code="z">(OCoLC)647697990</subfield><subfield code="z">(OCoLC)741249265</subfield><subfield code="z">(OCoLC)990712483</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">205865</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.S3538 2009</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schiesser, W. E.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87121164</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A compendium of partial differential equation models :</subfield><subfield code="b">method of lines analysis with Matlab /</subfield><subfield code="c">William E. Schiesser, Graham W. Griffiths.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 474 pages, 2 unnumbered pages of plates) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Dedication -- Contents -- Preface -- 1 An Introduction to the Method of Lines -- SOME PDE BASICS -- INITIAL AND BOUNDARY CONDITIONS -- TYPES OF PDE SOLUTIONS -- PDE SUBSCRIPT NOTATION -- A GENERAL PDE SYSTEM -- PDE GEOMETRIC CLASSIFICATION -- ELEMENTS OF THE MOL -- ODE INTEGRATION WITHIN THE MOL -- NUMERICAL DIFFUSION AND OSCILLATION -- DIFFERENTIAL ALGEBRAIC EQUATIONS -- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS -- h- AND p-REFINEMENT -- ORIGIN OF THE NAME 8220;METHOD OF LINES8221; -- SOURCES OF ODE/DAE INTEGRATORS -- REFERENCES -- 2 A One-Dimensional, Linear Partial Differential Equation -- 3 Greens Function Analysis -- APPENDIX A -- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1) -- A.2. The Function simp -- REFERENCES -- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations -- REFERENCE -- 5 Euler, Navier Stokes, and Burgers Equations -- REFERENCE -- 6 The Cubic Schr246;dinger Equation -- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION -- A.1. Introduction -- A.2. A Nonrigorous derivation -- REFERENCES -- 7 The KortewegdeVries Equation -- APPENDIX A -- A.1. FD Routine uxxx7c -- APPENDIX B -- B.1. Jacobian Matrix Routine jpattern_num -- APPENDIX C -- C.1. Some Background to the KdV Equation -- REFERENCES -- 8 The Linear Wave Equation -- APPENDIX A -- A.1. ODE Routines pde_1, pde_2, pde_3 -- REFERENCES -- 9 Maxwells Equations -- 10 Elliptic Partial Differential Equations: Laplaces Equation -- REFERENCES -- 11 Three-Dimensional Partial Differential Equation -- 12 Partial Differential Equation with a Mixed Partial Derivative -- REFERENCE -- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates -- APPENDIX A -- A.1. Units Check for Eqs. (13.1)(13.13) -- REFERENCES -- 14 Diffusion Equation in Spherical Coordinates -- REFERENCES -- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation -- REFERENCES -- APPENDIX 2 Order Conditions for Finite-Difference Approximations -- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations -- REFERENCES -- APPENDIX 4 Implementation of Time-Varying Boundary Conditions -- APPENDIX 5 The Differentiation in Space Subroutines Library -- FIRST-DERIVATIVE ROUTINES -- Argument List -- SECOND-DERIVATIVE ROUTINES -- Argument List -- HIGHER-ORDER AND MIXED DERIVATIVES -- OBTAINING THE DSS LIBRARY -- APPENDIX 6 Animating Simulation Results -- GENERAL -- MATLAB MOVIE -- BASIC EXAMPLE -- AVI MOVIES -- EXAMPLE BURGERS EQUATION MOVIE -- EXAMPLE SCHR214;DINGER EQUATION MOVIE -- EXAMPLE KdV EQUATION MOVIE -- ANIMATED GIF FILES -- EXAMPLE 3D LAPLACE EQUATION MOVIE -- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE -- REFERENCES -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">MATLAB.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92036881</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4044779-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATLAB</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4329066-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4128130-5</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Graham W.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2008071381</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">A compendium of partial differential equation models (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFx6GQ9JTXyPrGrD6pxr4m</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="a">Schiesser, W.E.</subfield><subfield code="t">Compendium of partial differential equation models.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2009</subfield><subfield code="z">9780521519861</subfield><subfield code="w">(DLC) 2008045816</subfield><subfield code="w">(OCoLC)263409317</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=271007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">10149298</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10289284</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">271007</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">205865</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3050455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3014416</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3033515</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3277617</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn320896678 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:45Z |
institution | BVB |
isbn | 9780521519861 0521519861 9780511504969 0511504969 9780511508530 0511508530 9780511507878 0511507879 9780511576270 0511576277 |
language | English |
oclc_num | 320896678 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 474 pages, 2 unnumbered pages of plates) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Schiesser, W. E. http://id.loc.gov/authorities/names/n87121164 A compendium of partial differential equation models : method of lines analysis with Matlab / William E. Schiesser, Graham W. Griffiths. Cambridge ; New York : Cambridge University Press, 2009. 1 online resource (xiii, 474 pages, 2 unnumbered pages of plates) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Cover -- Dedication -- Contents -- Preface -- 1 An Introduction to the Method of Lines -- SOME PDE BASICS -- INITIAL AND BOUNDARY CONDITIONS -- TYPES OF PDE SOLUTIONS -- PDE SUBSCRIPT NOTATION -- A GENERAL PDE SYSTEM -- PDE GEOMETRIC CLASSIFICATION -- ELEMENTS OF THE MOL -- ODE INTEGRATION WITHIN THE MOL -- NUMERICAL DIFFUSION AND OSCILLATION -- DIFFERENTIAL ALGEBRAIC EQUATIONS -- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS -- h- AND p-REFINEMENT -- ORIGIN OF THE NAME 8220;METHOD OF LINES8221; -- SOURCES OF ODE/DAE INTEGRATORS -- REFERENCES -- 2 A One-Dimensional, Linear Partial Differential Equation -- 3 Greens Function Analysis -- APPENDIX A -- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1) -- A.2. The Function simp -- REFERENCES -- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations -- REFERENCE -- 5 Euler, Navier Stokes, and Burgers Equations -- REFERENCE -- 6 The Cubic Schr246;dinger Equation -- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION -- A.1. Introduction -- A.2. A Nonrigorous derivation -- REFERENCES -- 7 The KortewegdeVries Equation -- APPENDIX A -- A.1. FD Routine uxxx7c -- APPENDIX B -- B.1. Jacobian Matrix Routine jpattern_num -- APPENDIX C -- C.1. Some Background to the KdV Equation -- REFERENCES -- 8 The Linear Wave Equation -- APPENDIX A -- A.1. ODE Routines pde_1, pde_2, pde_3 -- REFERENCES -- 9 Maxwells Equations -- 10 Elliptic Partial Differential Equations: Laplaces Equation -- REFERENCES -- 11 Three-Dimensional Partial Differential Equation -- 12 Partial Differential Equation with a Mixed Partial Derivative -- REFERENCE -- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates -- APPENDIX A -- A.1. Units Check for Eqs. (13.1)(13.13) -- REFERENCES -- 14 Diffusion Equation in Spherical Coordinates -- REFERENCES -- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation -- REFERENCES -- APPENDIX 2 Order Conditions for Finite-Difference Approximations -- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations -- REFERENCES -- APPENDIX 4 Implementation of Time-Varying Boundary Conditions -- APPENDIX 5 The Differentiation in Space Subroutines Library -- FIRST-DERIVATIVE ROUTINES -- Argument List -- SECOND-DERIVATIVE ROUTINES -- Argument List -- HIGHER-ORDER AND MIXED DERIVATIVES -- OBTAINING THE DSS LIBRARY -- APPENDIX 6 Animating Simulation Results -- GENERAL -- MATLAB MOVIE -- BASIC EXAMPLE -- AVI MOVIES -- EXAMPLE BURGERS EQUATION MOVIE -- EXAMPLE SCHR214;DINGER EQUATION MOVIE -- EXAMPLE KdV EQUATION MOVIE -- ANIMATED GIF FILES -- EXAMPLE 3D LAPLACE EQUATION MOVIE -- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE -- REFERENCES -- Index. Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model. Print version record. MATLAB. http://id.loc.gov/authorities/names/n92036881 MATLAB fast Differential equations, Partial Mathematical models. Équations aux dérivées partielles Modèles mathématiques. MATHEMATICS Differential Equations Partial. bisacsh Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 MATLAB gnd http://d-nb.info/gnd/4329066-8 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 Electronic books. Griffiths, Graham W. http://id.loc.gov/authorities/names/n2008071381 has work: A compendium of partial differential equation models (Text) https://id.oclc.org/worldcat/entity/E39PCFx6GQ9JTXyPrGrD6pxr4m https://id.oclc.org/worldcat/ontology/hasWork Schiesser, W.E. Compendium of partial differential equation models. Cambridge ; New York : Cambridge University Press, 2009 9780521519861 (DLC) 2008045816 (OCoLC)263409317 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=271007 Volltext |
spellingShingle | Schiesser, W. E. A compendium of partial differential equation models : method of lines analysis with Matlab / Cover -- Dedication -- Contents -- Preface -- 1 An Introduction to the Method of Lines -- SOME PDE BASICS -- INITIAL AND BOUNDARY CONDITIONS -- TYPES OF PDE SOLUTIONS -- PDE SUBSCRIPT NOTATION -- A GENERAL PDE SYSTEM -- PDE GEOMETRIC CLASSIFICATION -- ELEMENTS OF THE MOL -- ODE INTEGRATION WITHIN THE MOL -- NUMERICAL DIFFUSION AND OSCILLATION -- DIFFERENTIAL ALGEBRAIC EQUATIONS -- HIGHER DIMENSIONS AND DIFFERENT COORDINATE SYSTEMS -- h- AND p-REFINEMENT -- ORIGIN OF THE NAME 8220;METHOD OF LINES8221; -- SOURCES OF ODE/DAE INTEGRATORS -- REFERENCES -- 2 A One-Dimensional, Linear Partial Differential Equation -- 3 Greens Function Analysis -- APPENDIX A -- A.1. Verification of Eq. (3.4b) as the Solution to Eq. (3.1) -- A.2. The Function simp -- REFERENCES -- 4 Two Nonlinear, Variable-Coefficient, Inhomogeneous Partial Differential Equations -- REFERENCE -- 5 Euler, Navier Stokes, and Burgers Equations -- REFERENCE -- 6 The Cubic Schr246;dinger Equation -- APPENDIX A: SOME BACKGROUND TO SCHR214;DINGERS EQUATION -- A.1. Introduction -- A.2. A Nonrigorous derivation -- REFERENCES -- 7 The KortewegdeVries Equation -- APPENDIX A -- A.1. FD Routine uxxx7c -- APPENDIX B -- B.1. Jacobian Matrix Routine jpattern_num -- APPENDIX C -- C.1. Some Background to the KdV Equation -- REFERENCES -- 8 The Linear Wave Equation -- APPENDIX A -- A.1. ODE Routines pde_1, pde_2, pde_3 -- REFERENCES -- 9 Maxwells Equations -- 10 Elliptic Partial Differential Equations: Laplaces Equation -- REFERENCES -- 11 Three-Dimensional Partial Differential Equation -- 12 Partial Differential Equation with a Mixed Partial Derivative -- REFERENCE -- 13 Simultaneous, Nonlinear, Two-Dimensional Partial Differential Equations in Cylindrical Coordinates -- APPENDIX A -- A.1. Units Check for Eqs. (13.1)(13.13) -- REFERENCES -- 14 Diffusion Equation in Spherical Coordinates -- REFERENCES -- APPENDIX 1 Partial Differential Equations from Conservation Principles: The Anisotropic Diffusion Equation -- REFERENCES -- APPENDIX 2 Order Conditions for Finite-Difference Approximations -- APPENDIX 3 Analytical Solution of Nonlinear, Traveling Wave Partial Differential Equations -- REFERENCES -- APPENDIX 4 Implementation of Time-Varying Boundary Conditions -- APPENDIX 5 The Differentiation in Space Subroutines Library -- FIRST-DERIVATIVE ROUTINES -- Argument List -- SECOND-DERIVATIVE ROUTINES -- Argument List -- HIGHER-ORDER AND MIXED DERIVATIVES -- OBTAINING THE DSS LIBRARY -- APPENDIX 6 Animating Simulation Results -- GENERAL -- MATLAB MOVIE -- BASIC EXAMPLE -- AVI MOVIES -- EXAMPLE BURGERS EQUATION MOVIE -- EXAMPLE SCHR214;DINGER EQUATION MOVIE -- EXAMPLE KdV EQUATION MOVIE -- ANIMATED GIF FILES -- EXAMPLE 3D LAPLACE EQUATION MOVIE -- EXAMPLE SPHERICAL DIFFUSION EQUATION MOVIE -- REFERENCES -- Index. MATLAB. http://id.loc.gov/authorities/names/n92036881 MATLAB fast Differential equations, Partial Mathematical models. Équations aux dérivées partielles Modèles mathématiques. MATHEMATICS Differential Equations Partial. bisacsh Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 MATLAB gnd http://d-nb.info/gnd/4329066-8 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 |
subject_GND | http://id.loc.gov/authorities/names/n92036881 http://d-nb.info/gnd/4044779-0 http://d-nb.info/gnd/4329066-8 http://d-nb.info/gnd/4128130-5 |
title | A compendium of partial differential equation models : method of lines analysis with Matlab / |
title_auth | A compendium of partial differential equation models : method of lines analysis with Matlab / |
title_exact_search | A compendium of partial differential equation models : method of lines analysis with Matlab / |
title_full | A compendium of partial differential equation models : method of lines analysis with Matlab / William E. Schiesser, Graham W. Griffiths. |
title_fullStr | A compendium of partial differential equation models : method of lines analysis with Matlab / William E. Schiesser, Graham W. Griffiths. |
title_full_unstemmed | A compendium of partial differential equation models : method of lines analysis with Matlab / William E. Schiesser, Graham W. Griffiths. |
title_short | A compendium of partial differential equation models : |
title_sort | compendium of partial differential equation models method of lines analysis with matlab |
title_sub | method of lines analysis with Matlab / |
topic | MATLAB. http://id.loc.gov/authorities/names/n92036881 MATLAB fast Differential equations, Partial Mathematical models. Équations aux dérivées partielles Modèles mathématiques. MATHEMATICS Differential Equations Partial. bisacsh Partielle Differentialgleichung gnd http://d-nb.info/gnd/4044779-0 MATLAB gnd http://d-nb.info/gnd/4329066-8 Numerisches Verfahren gnd http://d-nb.info/gnd/4128130-5 |
topic_facet | MATLAB. MATLAB Differential equations, Partial Mathematical models. Équations aux dérivées partielles Modèles mathématiques. MATHEMATICS Differential Equations Partial. Partielle Differentialgleichung Numerisches Verfahren Electronic books. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=271007 |
work_keys_str_mv | AT schiesserwe acompendiumofpartialdifferentialequationmodelsmethodoflinesanalysiswithmatlab AT griffithsgrahamw acompendiumofpartialdifferentialequationmodelsmethodoflinesanalysiswithmatlab AT schiesserwe compendiumofpartialdifferentialequationmodelsmethodoflinesanalysiswithmatlab AT griffithsgrahamw compendiumofpartialdifferentialequationmodelsmethodoflinesanalysiswithmatlab |