Introduction to sensitivity and stability analysis in nonlinear programming /:
Introduction to sensitivity and stability analysis in nonlinear programming.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1983.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 165. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Introduction to sensitivity and stability analysis in nonlinear programming. |
Beschreibung: | 1 online resource (xii, 367 pages) |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9780122544507 0122544501 9780080956718 0080956718 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316568494 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1983 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OPELS |d OCLCE |d E7B |d OCLCQ |d OPELS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d OCLCQ |d K6U |d LEAUB |d M8D |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 297298665 |a 562870213 |a 978600354 |a 978907664 |a 1047897421 |a 1086440827 |a 1157101804 |a 1157977528 |a 1178682723 |a 1183922725 |a 1249418401 |a 1257340890 |a 1296759748 | ||
020 | |a 9780122544507 |q (electronic bk.) | ||
020 | |a 0122544501 |q (electronic bk.) | ||
020 | |a 9780080956718 |q (electronic bk.) | ||
020 | |a 0080956718 |q (electronic bk.) | ||
035 | |a (OCoLC)316568494 |z (OCoLC)297298665 |z (OCoLC)562870213 |z (OCoLC)978600354 |z (OCoLC)978907664 |z (OCoLC)1047897421 |z (OCoLC)1086440827 |z (OCoLC)1157101804 |z (OCoLC)1157977528 |z (OCoLC)1178682723 |z (OCoLC)1183922725 |z (OCoLC)1249418401 |z (OCoLC)1257340890 |z (OCoLC)1296759748 | ||
042 | |a dlr | ||
050 | 4 | |a T57.8 |b .F53 1983eb | |
072 | 7 | |a MAT |x 017000 |2 bisacsh | |
082 | 7 | |a 519.7/6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Fiacco, Anthony V. | |
245 | 1 | 0 | |a Introduction to sensitivity and stability analysis in nonlinear programming / |c Anthony V. Fiacco. |
260 | |a New York : |b Academic Press, |c 1983. | ||
300 | |a 1 online resource (xii, 367 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 165 | |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Print version record. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
505 | 0 | |a Front Cover; Introduction to Sensitivity and Stability Analysis in Nonlinear Programming; Copyright Page; Contents; Preface; PART I: Overview; Chapter 1. Motivation and Perspective; Chapter 2. Basic Sensitivity and Stability Results; 2.1 Introduction; 2.2 Objective Function and Solution Set Continuity; 2.3 Differential Stability; 2.4 Implicit Function Theorem Results; 2.5 Optimal Value and Solution Bounds; 2.6 General Results from RHS Results; 2.7 Summary; PART II: Theory and Calculation of Solution Parameter Derivatives; Chapter 3. Sensitivity Analysis under Second- Order Assumptions | |
505 | 8 | |a 3.1 Introduction3.2 First-Order Sensitivity Analysis of a Second-Order Local Solution; 3.3 Examples; 3.4 First- and Second-Order Parameter Derivatives of the Optimal Value Function; Chapter 4. Computational Aspects of Sensitivity Calculations: The General Problem; 4.1 Introduction; 4.2 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple; 4.3 Applications and Examples; Chapter 5. Computational Aspects: RHS Perturbations; 5.1 Introduction; 5.2 The Use and Initial Interpretation of Lagrange Multipliers | |
505 | 8 | |a 5.3 Examples of Early Sensitivity Interpretations of Lagrange Multipliers5.4 Supporting Theory; 5.5 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple and Second Derivatives of the Optimal Value Function; 5.6 Examples and Applications; PART III: Algorithmic Approximations; Chapter 6. Estimates of Sensitivity Information Using Penalty Functions; 6.1 Introduction; 6.2 Approximation of Sensitivity Information Using the Logarithmic- Quadratic Mixed Barrier-Penalty Function Method; 6.3 Examples of Estimates of Solution Point and Lagrange Multiplier Parameter Derivatives | |
505 | 8 | |a 6.4 Extensions6.5 Sensitivity Calculations Based on the Perturbed Karush-Kuhn-Tucker System; 6.6 Optimal Value Function Sensitivity Estimates; 6.7 Example of Estimates of Optimal Value and First- and Second- Parameter Derivatives; 6.8 Sensitivity Approximations for RHS Perturbations; 6.9 Recapitulation; Chapter 7. Calculation of Sensitivity Information Using Other Algorithms; 7.1 Introduction; 7.2 Connections between Algorithmic and Sensitivity Calculations; 7.3 Algorithmic Calculations of the Inverse of the Jacobian of the Karush-Kuhn-Tucker System | |
505 | 8 | |a 7.4 Sensitivity Results for Augmented Lagrangians7.5 Conclusions and Extensions; PART IV: Applications and Future Research; Chapter 8. An Example of Computational Implementations: A Multi-Item Continuous Review Inventory Model; 8.1 Introduction; 8.2 Screening of Sensitivity Information; 8.3 Example Sensitivity Calculations by SENSUMT; 8.4 A Multi-Item Inventory Model; 8.5 Additional Computational Experience with Applications; Chapter 9. Computable Optimal Value Bounds and Solution Vector Estimates for Parametric NLP Programs; 9.1 Introduction | |
520 | |a Introduction to sensitivity and stability analysis in nonlinear programming. | ||
650 | 0 | |a Nonlinear programming. |0 http://id.loc.gov/authorities/subjects/sh85092331 | |
650 | 6 | |a Programmation non linéaire. | |
650 | 7 | |a MATHEMATICS |x Linear & Nonlinear Programming. |2 bisacsh | |
650 | 7 | |a Nonlinear programming |2 fast | |
653 | |a Nonlinear programming | ||
776 | 0 | 8 | |i Print version: |a Fiacco, Anthony V. |t Introduction to sensitivity and stability analysis in nonlinear programming. |d New York : Academic Press, 1983 |z 9780122544507 |w (DLC) 82011642 |w (OCoLC)8667936 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 165. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/165 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297027 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL452985 | ||
938 | |a ebrary |b EBRY |n ebr10329606 | ||
938 | |a EBSCOhost |b EBSC |n 297027 | ||
938 | |a YBP Library Services |b YANK |n 3101865 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316568494 |
---|---|
_version_ | 1816881689302925312 |
adam_text | |
any_adam_object | |
author | Fiacco, Anthony V. |
author_facet | Fiacco, Anthony V. |
author_role | |
author_sort | Fiacco, Anthony V. |
author_variant | a v f av avf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | T57 |
callnumber-raw | T57.8 .F53 1983eb |
callnumber-search | T57.8 .F53 1983eb |
callnumber-sort | T 257.8 F53 41983EB |
callnumber-subject | T - General Technology |
collection | ZDB-4-EBA |
contents | Front Cover; Introduction to Sensitivity and Stability Analysis in Nonlinear Programming; Copyright Page; Contents; Preface; PART I: Overview; Chapter 1. Motivation and Perspective; Chapter 2. Basic Sensitivity and Stability Results; 2.1 Introduction; 2.2 Objective Function and Solution Set Continuity; 2.3 Differential Stability; 2.4 Implicit Function Theorem Results; 2.5 Optimal Value and Solution Bounds; 2.6 General Results from RHS Results; 2.7 Summary; PART II: Theory and Calculation of Solution Parameter Derivatives; Chapter 3. Sensitivity Analysis under Second- Order Assumptions 3.1 Introduction3.2 First-Order Sensitivity Analysis of a Second-Order Local Solution; 3.3 Examples; 3.4 First- and Second-Order Parameter Derivatives of the Optimal Value Function; Chapter 4. Computational Aspects of Sensitivity Calculations: The General Problem; 4.1 Introduction; 4.2 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple; 4.3 Applications and Examples; Chapter 5. Computational Aspects: RHS Perturbations; 5.1 Introduction; 5.2 The Use and Initial Interpretation of Lagrange Multipliers 5.3 Examples of Early Sensitivity Interpretations of Lagrange Multipliers5.4 Supporting Theory; 5.5 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple and Second Derivatives of the Optimal Value Function; 5.6 Examples and Applications; PART III: Algorithmic Approximations; Chapter 6. Estimates of Sensitivity Information Using Penalty Functions; 6.1 Introduction; 6.2 Approximation of Sensitivity Information Using the Logarithmic- Quadratic Mixed Barrier-Penalty Function Method; 6.3 Examples of Estimates of Solution Point and Lagrange Multiplier Parameter Derivatives 6.4 Extensions6.5 Sensitivity Calculations Based on the Perturbed Karush-Kuhn-Tucker System; 6.6 Optimal Value Function Sensitivity Estimates; 6.7 Example of Estimates of Optimal Value and First- and Second- Parameter Derivatives; 6.8 Sensitivity Approximations for RHS Perturbations; 6.9 Recapitulation; Chapter 7. Calculation of Sensitivity Information Using Other Algorithms; 7.1 Introduction; 7.2 Connections between Algorithmic and Sensitivity Calculations; 7.3 Algorithmic Calculations of the Inverse of the Jacobian of the Karush-Kuhn-Tucker System 7.4 Sensitivity Results for Augmented Lagrangians7.5 Conclusions and Extensions; PART IV: Applications and Future Research; Chapter 8. An Example of Computational Implementations: A Multi-Item Continuous Review Inventory Model; 8.1 Introduction; 8.2 Screening of Sensitivity Information; 8.3 Example Sensitivity Calculations by SENSUMT; 8.4 A Multi-Item Inventory Model; 8.5 Additional Computational Experience with Applications; Chapter 9. Computable Optimal Value Bounds and Solution Vector Estimates for Parametric NLP Programs; 9.1 Introduction |
ctrlnum | (OCoLC)316568494 |
dewey-full | 519.7/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.7/6 |
dewey-search | 519.7/6 |
dewey-sort | 3519.7 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06328cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316568494</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1983 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCE</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">297298665</subfield><subfield code="a">562870213</subfield><subfield code="a">978600354</subfield><subfield code="a">978907664</subfield><subfield code="a">1047897421</subfield><subfield code="a">1086440827</subfield><subfield code="a">1157101804</subfield><subfield code="a">1157977528</subfield><subfield code="a">1178682723</subfield><subfield code="a">1183922725</subfield><subfield code="a">1249418401</subfield><subfield code="a">1257340890</subfield><subfield code="a">1296759748</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122544507</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122544501</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956718</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956718</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568494</subfield><subfield code="z">(OCoLC)297298665</subfield><subfield code="z">(OCoLC)562870213</subfield><subfield code="z">(OCoLC)978600354</subfield><subfield code="z">(OCoLC)978907664</subfield><subfield code="z">(OCoLC)1047897421</subfield><subfield code="z">(OCoLC)1086440827</subfield><subfield code="z">(OCoLC)1157101804</subfield><subfield code="z">(OCoLC)1157977528</subfield><subfield code="z">(OCoLC)1178682723</subfield><subfield code="z">(OCoLC)1183922725</subfield><subfield code="z">(OCoLC)1249418401</subfield><subfield code="z">(OCoLC)1257340890</subfield><subfield code="z">(OCoLC)1296759748</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">T57.8</subfield><subfield code="b">.F53 1983eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">017000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.7/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fiacco, Anthony V.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to sensitivity and stability analysis in nonlinear programming /</subfield><subfield code="c">Anthony V. Fiacco.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1983.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 367 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 165</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2010.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2010</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Introduction to Sensitivity and Stability Analysis in Nonlinear Programming; Copyright Page; Contents; Preface; PART I: Overview; Chapter 1. Motivation and Perspective; Chapter 2. Basic Sensitivity and Stability Results; 2.1 Introduction; 2.2 Objective Function and Solution Set Continuity; 2.3 Differential Stability; 2.4 Implicit Function Theorem Results; 2.5 Optimal Value and Solution Bounds; 2.6 General Results from RHS Results; 2.7 Summary; PART II: Theory and Calculation of Solution Parameter Derivatives; Chapter 3. Sensitivity Analysis under Second- Order Assumptions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1 Introduction3.2 First-Order Sensitivity Analysis of a Second-Order Local Solution; 3.3 Examples; 3.4 First- and Second-Order Parameter Derivatives of the Optimal Value Function; Chapter 4. Computational Aspects of Sensitivity Calculations: The General Problem; 4.1 Introduction; 4.2 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple; 4.3 Applications and Examples; Chapter 5. Computational Aspects: RHS Perturbations; 5.1 Introduction; 5.2 The Use and Initial Interpretation of Lagrange Multipliers</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.3 Examples of Early Sensitivity Interpretations of Lagrange Multipliers5.4 Supporting Theory; 5.5 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple and Second Derivatives of the Optimal Value Function; 5.6 Examples and Applications; PART III: Algorithmic Approximations; Chapter 6. Estimates of Sensitivity Information Using Penalty Functions; 6.1 Introduction; 6.2 Approximation of Sensitivity Information Using the Logarithmic- Quadratic Mixed Barrier-Penalty Function Method; 6.3 Examples of Estimates of Solution Point and Lagrange Multiplier Parameter Derivatives</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4 Extensions6.5 Sensitivity Calculations Based on the Perturbed Karush-Kuhn-Tucker System; 6.6 Optimal Value Function Sensitivity Estimates; 6.7 Example of Estimates of Optimal Value and First- and Second- Parameter Derivatives; 6.8 Sensitivity Approximations for RHS Perturbations; 6.9 Recapitulation; Chapter 7. Calculation of Sensitivity Information Using Other Algorithms; 7.1 Introduction; 7.2 Connections between Algorithmic and Sensitivity Calculations; 7.3 Algorithmic Calculations of the Inverse of the Jacobian of the Karush-Kuhn-Tucker System</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4 Sensitivity Results for Augmented Lagrangians7.5 Conclusions and Extensions; PART IV: Applications and Future Research; Chapter 8. An Example of Computational Implementations: A Multi-Item Continuous Review Inventory Model; 8.1 Introduction; 8.2 Screening of Sensitivity Information; 8.3 Example Sensitivity Calculations by SENSUMT; 8.4 A Multi-Item Inventory Model; 8.5 Additional Computational Experience with Applications; Chapter 9. Computable Optimal Value Bounds and Solution Vector Estimates for Parametric NLP Programs; 9.1 Introduction</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction to sensitivity and stability analysis in nonlinear programming.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear programming.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092331</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Programmation non linéaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Linear & Nonlinear Programming.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear programming</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Fiacco, Anthony V.</subfield><subfield code="t">Introduction to sensitivity and stability analysis in nonlinear programming.</subfield><subfield code="d">New York : Academic Press, 1983</subfield><subfield code="z">9780122544507</subfield><subfield code="w">(DLC) 82011642</subfield><subfield code="w">(OCoLC)8667936</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 165.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/165</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL452985</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329606</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297027</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101865</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316568494 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780122544507 0122544501 9780080956718 0080956718 |
language | English |
oclc_num | 316568494 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 367 pages) |
psigel | ZDB-4-EBA |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Fiacco, Anthony V. Introduction to sensitivity and stability analysis in nonlinear programming / Anthony V. Fiacco. New York : Academic Press, 1983. 1 online resource (xii, 367 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 165 Includes bibliographical references and indexes. Print version record. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2010. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL Front Cover; Introduction to Sensitivity and Stability Analysis in Nonlinear Programming; Copyright Page; Contents; Preface; PART I: Overview; Chapter 1. Motivation and Perspective; Chapter 2. Basic Sensitivity and Stability Results; 2.1 Introduction; 2.2 Objective Function and Solution Set Continuity; 2.3 Differential Stability; 2.4 Implicit Function Theorem Results; 2.5 Optimal Value and Solution Bounds; 2.6 General Results from RHS Results; 2.7 Summary; PART II: Theory and Calculation of Solution Parameter Derivatives; Chapter 3. Sensitivity Analysis under Second- Order Assumptions 3.1 Introduction3.2 First-Order Sensitivity Analysis of a Second-Order Local Solution; 3.3 Examples; 3.4 First- and Second-Order Parameter Derivatives of the Optimal Value Function; Chapter 4. Computational Aspects of Sensitivity Calculations: The General Problem; 4.1 Introduction; 4.2 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple; 4.3 Applications and Examples; Chapter 5. Computational Aspects: RHS Perturbations; 5.1 Introduction; 5.2 The Use and Initial Interpretation of Lagrange Multipliers 5.3 Examples of Early Sensitivity Interpretations of Lagrange Multipliers5.4 Supporting Theory; 5.5 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple and Second Derivatives of the Optimal Value Function; 5.6 Examples and Applications; PART III: Algorithmic Approximations; Chapter 6. Estimates of Sensitivity Information Using Penalty Functions; 6.1 Introduction; 6.2 Approximation of Sensitivity Information Using the Logarithmic- Quadratic Mixed Barrier-Penalty Function Method; 6.3 Examples of Estimates of Solution Point and Lagrange Multiplier Parameter Derivatives 6.4 Extensions6.5 Sensitivity Calculations Based on the Perturbed Karush-Kuhn-Tucker System; 6.6 Optimal Value Function Sensitivity Estimates; 6.7 Example of Estimates of Optimal Value and First- and Second- Parameter Derivatives; 6.8 Sensitivity Approximations for RHS Perturbations; 6.9 Recapitulation; Chapter 7. Calculation of Sensitivity Information Using Other Algorithms; 7.1 Introduction; 7.2 Connections between Algorithmic and Sensitivity Calculations; 7.3 Algorithmic Calculations of the Inverse of the Jacobian of the Karush-Kuhn-Tucker System 7.4 Sensitivity Results for Augmented Lagrangians7.5 Conclusions and Extensions; PART IV: Applications and Future Research; Chapter 8. An Example of Computational Implementations: A Multi-Item Continuous Review Inventory Model; 8.1 Introduction; 8.2 Screening of Sensitivity Information; 8.3 Example Sensitivity Calculations by SENSUMT; 8.4 A Multi-Item Inventory Model; 8.5 Additional Computational Experience with Applications; Chapter 9. Computable Optimal Value Bounds and Solution Vector Estimates for Parametric NLP Programs; 9.1 Introduction Introduction to sensitivity and stability analysis in nonlinear programming. Nonlinear programming. http://id.loc.gov/authorities/subjects/sh85092331 Programmation non linéaire. MATHEMATICS Linear & Nonlinear Programming. bisacsh Nonlinear programming fast Nonlinear programming Print version: Fiacco, Anthony V. Introduction to sensitivity and stability analysis in nonlinear programming. New York : Academic Press, 1983 9780122544507 (DLC) 82011642 (OCoLC)8667936 Mathematics in science and engineering ; v. 165. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/165 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297027 Volltext |
spellingShingle | Fiacco, Anthony V. Introduction to sensitivity and stability analysis in nonlinear programming / Mathematics in science and engineering ; Front Cover; Introduction to Sensitivity and Stability Analysis in Nonlinear Programming; Copyright Page; Contents; Preface; PART I: Overview; Chapter 1. Motivation and Perspective; Chapter 2. Basic Sensitivity and Stability Results; 2.1 Introduction; 2.2 Objective Function and Solution Set Continuity; 2.3 Differential Stability; 2.4 Implicit Function Theorem Results; 2.5 Optimal Value and Solution Bounds; 2.6 General Results from RHS Results; 2.7 Summary; PART II: Theory and Calculation of Solution Parameter Derivatives; Chapter 3. Sensitivity Analysis under Second- Order Assumptions 3.1 Introduction3.2 First-Order Sensitivity Analysis of a Second-Order Local Solution; 3.3 Examples; 3.4 First- and Second-Order Parameter Derivatives of the Optimal Value Function; Chapter 4. Computational Aspects of Sensitivity Calculations: The General Problem; 4.1 Introduction; 4.2 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple; 4.3 Applications and Examples; Chapter 5. Computational Aspects: RHS Perturbations; 5.1 Introduction; 5.2 The Use and Initial Interpretation of Lagrange Multipliers 5.3 Examples of Early Sensitivity Interpretations of Lagrange Multipliers5.4 Supporting Theory; 5.5 Formulas for the Parameter First Derivatives of a Karush-Kuhn-Tucker Triple and Second Derivatives of the Optimal Value Function; 5.6 Examples and Applications; PART III: Algorithmic Approximations; Chapter 6. Estimates of Sensitivity Information Using Penalty Functions; 6.1 Introduction; 6.2 Approximation of Sensitivity Information Using the Logarithmic- Quadratic Mixed Barrier-Penalty Function Method; 6.3 Examples of Estimates of Solution Point and Lagrange Multiplier Parameter Derivatives 6.4 Extensions6.5 Sensitivity Calculations Based on the Perturbed Karush-Kuhn-Tucker System; 6.6 Optimal Value Function Sensitivity Estimates; 6.7 Example of Estimates of Optimal Value and First- and Second- Parameter Derivatives; 6.8 Sensitivity Approximations for RHS Perturbations; 6.9 Recapitulation; Chapter 7. Calculation of Sensitivity Information Using Other Algorithms; 7.1 Introduction; 7.2 Connections between Algorithmic and Sensitivity Calculations; 7.3 Algorithmic Calculations of the Inverse of the Jacobian of the Karush-Kuhn-Tucker System 7.4 Sensitivity Results for Augmented Lagrangians7.5 Conclusions and Extensions; PART IV: Applications and Future Research; Chapter 8. An Example of Computational Implementations: A Multi-Item Continuous Review Inventory Model; 8.1 Introduction; 8.2 Screening of Sensitivity Information; 8.3 Example Sensitivity Calculations by SENSUMT; 8.4 A Multi-Item Inventory Model; 8.5 Additional Computational Experience with Applications; Chapter 9. Computable Optimal Value Bounds and Solution Vector Estimates for Parametric NLP Programs; 9.1 Introduction Nonlinear programming. http://id.loc.gov/authorities/subjects/sh85092331 Programmation non linéaire. MATHEMATICS Linear & Nonlinear Programming. bisacsh Nonlinear programming fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85092331 |
title | Introduction to sensitivity and stability analysis in nonlinear programming / |
title_auth | Introduction to sensitivity and stability analysis in nonlinear programming / |
title_exact_search | Introduction to sensitivity and stability analysis in nonlinear programming / |
title_full | Introduction to sensitivity and stability analysis in nonlinear programming / Anthony V. Fiacco. |
title_fullStr | Introduction to sensitivity and stability analysis in nonlinear programming / Anthony V. Fiacco. |
title_full_unstemmed | Introduction to sensitivity and stability analysis in nonlinear programming / Anthony V. Fiacco. |
title_short | Introduction to sensitivity and stability analysis in nonlinear programming / |
title_sort | introduction to sensitivity and stability analysis in nonlinear programming |
topic | Nonlinear programming. http://id.loc.gov/authorities/subjects/sh85092331 Programmation non linéaire. MATHEMATICS Linear & Nonlinear Programming. bisacsh Nonlinear programming fast |
topic_facet | Nonlinear programming. Programmation non linéaire. MATHEMATICS Linear & Nonlinear Programming. Nonlinear programming |
url | https://www.sciencedirect.com/science/bookseries/00765392/165 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297027 |
work_keys_str_mv | AT fiaccoanthonyv introductiontosensitivityandstabilityanalysisinnonlinearprogramming |