Computational methods for optimizing distributed systems /:
Computational methods for optimizing distributed systems.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Orlando :
Academic Press,
1984.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 173. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Computational methods for optimizing distributed systems. |
Beschreibung: | 1 online resource (xiii, 317 pages) |
Bibliographie: | Includes bibliographical references (pages 301-312) and index. |
ISBN: | 9780126854800 0126854807 9780080956787 0080956785 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316568414 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1984 flu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OPELS |d E7B |d OCLCQ |d OPELS |d OCLCQ |d YDXCP |d OCLCQ |d OCLCF |d DEBBG |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d K6U |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 646827635 | ||
020 | |a 9780126854800 |q (electronic bk.) | ||
020 | |a 0126854807 |q (electronic bk.) | ||
020 | |a 9780080956787 |q (electronic bk.) | ||
020 | |a 0080956785 |q (electronic bk.) | ||
035 | |a (OCoLC)316568414 |z (OCoLC)646827635 | ||
050 | 4 | |a QA402 |b .T46 1984eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515.3/53 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Teo, K. L. |0 http://id.loc.gov/authorities/names/n81051843 | |
245 | 1 | 0 | |a Computational methods for optimizing distributed systems / |c K.L. Teo, Z.S. Wu. |
260 | |a Orlando : |b Academic Press, |c 1984. | ||
300 | |a 1 online resource (xiii, 317 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 173 | |
504 | |a Includes bibliographical references (pages 301-312) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property | |
505 | 8 | |a 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description | |
505 | 8 | |a 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems | |
505 | 8 | |a 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints | |
505 | 8 | |a Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index | |
520 | |a Computational methods for optimizing distributed systems. | ||
650 | 0 | |a Differential equations, Parabolic |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85037911 | |
650 | 0 | |a Boundary value problems |x Numerical solutions. |0 http://id.loc.gov/authorities/subjects/sh85016105 | |
650 | 0 | |a Distributed parameter systems. |0 http://id.loc.gov/authorities/subjects/sh85038542 | |
650 | 6 | |a Équations différentielles paraboliques |x Solutions numériques. | |
650 | 6 | |a Problèmes aux limites |x Solutions numériques. | |
650 | 6 | |a Systèmes à paramètres répartis. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Boundary value problems |x Numerical solutions |2 fast | |
650 | 7 | |a Differential equations, Parabolic |x Numerical solutions |2 fast | |
650 | 7 | |a Distributed parameter systems |2 fast | |
700 | 1 | |a Wu, Z. S. |0 http://id.loc.gov/authorities/names/n83176947 | |
776 | 0 | 8 | |i Print version: |a Teo, K.L. |t Computational methods for optimizing distributed systems. |d Orlando : Academic Press, 1984 |z 9780126854800 |w (DLC) 83015737 |w (OCoLC)10018031 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 173. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/173 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297160 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL453145 | ||
938 | |a ebrary |b EBRY |n ebr10329497 | ||
938 | |a EBSCOhost |b EBSC |n 297160 | ||
938 | |a YBP Library Services |b YANK |n 3101872 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316568414 |
---|---|
_version_ | 1816881689293488129 |
adam_text | |
any_adam_object | |
author | Teo, K. L. |
author2 | Wu, Z. S. |
author2_role | |
author2_variant | z s w zs zsw |
author_GND | http://id.loc.gov/authorities/names/n81051843 http://id.loc.gov/authorities/names/n83176947 |
author_facet | Teo, K. L. Wu, Z. S. |
author_role | |
author_sort | Teo, K. L. |
author_variant | k l t kl klt |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402 .T46 1984eb |
callnumber-search | QA402 .T46 1984eb |
callnumber-sort | QA 3402 T46 41984EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index |
ctrlnum | (OCoLC)316568414 |
dewey-full | 515.3/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.3/53 |
dewey-search | 515.3/53 |
dewey-sort | 3515.3 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05620cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316568414</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1984 flu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OPELS</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827635</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780126854800</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0126854807</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956787</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316568414</subfield><subfield code="z">(OCoLC)646827635</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA402</subfield><subfield code="b">.T46 1984eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.3/53</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Teo, K. L.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81051843</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational methods for optimizing distributed systems /</subfield><subfield code="c">K.L. Teo, Z.S. Wu.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Orlando :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1984.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 317 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 173</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 301-312) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computational methods for optimizing distributed systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Parabolic</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037911</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Boundary value problems</subfield><subfield code="x">Numerical solutions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016105</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Distributed parameter systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85038542</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles paraboliques</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes aux limites</subfield><subfield code="x">Solutions numériques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Systèmes à paramètres répartis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Parabolic</subfield><subfield code="x">Numerical solutions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Distributed parameter systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Z. S.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83176947</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Teo, K.L.</subfield><subfield code="t">Computational methods for optimizing distributed systems.</subfield><subfield code="d">Orlando : Academic Press, 1984</subfield><subfield code="z">9780126854800</subfield><subfield code="w">(DLC) 83015737</subfield><subfield code="w">(OCoLC)10018031</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 173.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/173</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297160</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL453145</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329497</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297160</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101872</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316568414 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780126854800 0126854807 9780080956787 0080956785 |
language | English |
oclc_num | 316568414 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 317 pages) |
psigel | ZDB-4-EBA |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Teo, K. L. http://id.loc.gov/authorities/names/n81051843 Computational methods for optimizing distributed systems / K.L. Teo, Z.S. Wu. Orlando : Academic Press, 1984. 1 online resource (xiii, 317 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 173 Includes bibliographical references (pages 301-312) and index. Print version record. Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index Computational methods for optimizing distributed systems. Differential equations, Parabolic Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037911 Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Distributed parameter systems. http://id.loc.gov/authorities/subjects/sh85038542 Équations différentielles paraboliques Solutions numériques. Problèmes aux limites Solutions numériques. Systèmes à paramètres répartis. MATHEMATICS Differential Equations Partial. bisacsh Boundary value problems Numerical solutions fast Differential equations, Parabolic Numerical solutions fast Distributed parameter systems fast Wu, Z. S. http://id.loc.gov/authorities/names/n83176947 Print version: Teo, K.L. Computational methods for optimizing distributed systems. Orlando : Academic Press, 1984 9780126854800 (DLC) 83015737 (OCoLC)10018031 Mathematics in science and engineering ; v. 173. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/173 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297160 Volltext |
spellingShingle | Teo, K. L. Computational methods for optimizing distributed systems / Mathematics in science and engineering ; Front Cover; Computational Methods for Optimizing Distributed Systems; Copyright Page; Contents; Preface; Chapter I. Mathematical Background; 1. Introduction; 2. Some Basic Concepts in Functional Analysis; 3. Some Basic Concepts in Measure Theory; 4. Some Function Spaces; 5. Relaxed Controls; 6. Multivalued Functions; 7. Bibliographical Remarks; Chapter II. Boundary Value Problems of Parabolic Type; 1. Introduction; 2. Boundary-Value Problems-Basic Definitions and Assumptions; 3. Three Elementary Lemmas; 4. A Priori Estimates; 5. Existence and Uniqueness of Solutions; 6. A Continuity Property 7. Certain Properties of Solutions of Equation (2.1)8. Boundary-Value Problems in General Form; 9. A Maximum Principle; Chapter III. Optimal Control of First Boundary Problems: Strong Variation Techniques; 1. Introduction; 2. System Description; 3. The Optimal Control Problems; 4. The Hamiltonian Functions; 5. The Successive Controls; 6. The Algorithm; 7. Necessary and Sufficient Conditions for Optimality; 8. Numerical Consideration; 9. Examples; 10. Discussion; Chapter IV. Optimal Policy of First Boundary Problems: Gradient Techniques; 1. Introduction; 2. System Description 3. The Optimization Problem4. An Increment Formula; 5. The Gradient of the Cost Functional; 6. A Conditional Gradient Algorithm; 7. Numerical Consideration and an Examples; 8. Optimal Control Problems with Terminal Inequality Constraints; 9. The Finite Element Method; 10. Discussion; Chapter V. Relaxed Controls and the Convergence of Optimal Control Algorithms; 1. Introduction; 2. The Strong Variational Algorithm; 3. The Conditional Gradient Algorithm; 4. The Feasible Directions Algorithm; 5. Discussion; Chapter VI. Optimal Control Problems Involving Second Boundary-Value Problems 1. Introduction2. The General Problem Statement; 3. Preparatory Results; 4. A Basic Inequality; 5. An Optimal Control Problem with a Linear Cost Functional; 6. An Optimal Control Problem with a Linear System; 7. The Finite Element Method; 8. Discussion; Appendix I: Stochastic Optimal Control Problems; Appendix II: Certain Results on Partial Differential Equations Needed in Chapters III, IV, and V; Appendix III: An Algorithm of Quadratic Programming; Appendix IV: A Quasi-Newton Method for Nonlinear Function Minimization with Linear Constraints Appendix V: An Algorithm for Optimal Control Problems of Linear Lumped Parameter SystemsAppendix VI: Meyer-Polak Proximity Algorithm; References; List of Notation; Index Differential equations, Parabolic Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037911 Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Distributed parameter systems. http://id.loc.gov/authorities/subjects/sh85038542 Équations différentielles paraboliques Solutions numériques. Problèmes aux limites Solutions numériques. Systèmes à paramètres répartis. MATHEMATICS Differential Equations Partial. bisacsh Boundary value problems Numerical solutions fast Differential equations, Parabolic Numerical solutions fast Distributed parameter systems fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037911 http://id.loc.gov/authorities/subjects/sh85016105 http://id.loc.gov/authorities/subjects/sh85038542 |
title | Computational methods for optimizing distributed systems / |
title_auth | Computational methods for optimizing distributed systems / |
title_exact_search | Computational methods for optimizing distributed systems / |
title_full | Computational methods for optimizing distributed systems / K.L. Teo, Z.S. Wu. |
title_fullStr | Computational methods for optimizing distributed systems / K.L. Teo, Z.S. Wu. |
title_full_unstemmed | Computational methods for optimizing distributed systems / K.L. Teo, Z.S. Wu. |
title_short | Computational methods for optimizing distributed systems / |
title_sort | computational methods for optimizing distributed systems |
topic | Differential equations, Parabolic Numerical solutions. http://id.loc.gov/authorities/subjects/sh85037911 Boundary value problems Numerical solutions. http://id.loc.gov/authorities/subjects/sh85016105 Distributed parameter systems. http://id.loc.gov/authorities/subjects/sh85038542 Équations différentielles paraboliques Solutions numériques. Problèmes aux limites Solutions numériques. Systèmes à paramètres répartis. MATHEMATICS Differential Equations Partial. bisacsh Boundary value problems Numerical solutions fast Differential equations, Parabolic Numerical solutions fast Distributed parameter systems fast |
topic_facet | Differential equations, Parabolic Numerical solutions. Boundary value problems Numerical solutions. Distributed parameter systems. Équations différentielles paraboliques Solutions numériques. Problèmes aux limites Solutions numériques. Systèmes à paramètres répartis. MATHEMATICS Differential Equations Partial. Boundary value problems Numerical solutions Differential equations, Parabolic Numerical solutions Distributed parameter systems |
url | https://www.sciencedirect.com/science/bookseries/00765392/173 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297160 |
work_keys_str_mv | AT teokl computationalmethodsforoptimizingdistributedsystems AT wuzs computationalmethodsforoptimizingdistributedsystems |