First order elliptic systems :: a function theoretic approach /
First order elliptic systems : a function theoretic approach.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Academic Press,
1983.
|
Schriftenreihe: | Mathematics in science and engineering ;
v. 163. |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | First order elliptic systems : a function theoretic approach. |
Beschreibung: | 1 online resource (xi, 281 pages) |
Bibliographie: | Includes bibliographical references (pages 269-274) and index. |
ISBN: | 9780122832802 0122832809 9780080956695 0080956696 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn316566645 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 090320s1983 nyu ob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d N$T |d OCLCQ |d EBLCP |d IDEBK |d OPELS |d E7B |d OCLCQ |d OCLCO |d OCLCQ |d OPELS |d OCLCF |d DEBBG |d OCLCQ |d NLGGC |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d STF |d LEAUB |d M8D |d OCLCQ |d OCLCO |d SGP |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 646827880 |a 742295268 |a 816325123 |a 823122112 |a 823843525 |a 823912223 |a 824099298 |a 824154714 | ||
020 | |a 9780122832802 |q (electronic bk.) | ||
020 | |a 0122832809 |q (electronic bk.) | ||
020 | |a 9780080956695 |q (electronic bk.) | ||
020 | |a 0080956696 |q (electronic bk.) | ||
035 | |a (OCoLC)316566645 |z (OCoLC)646827880 |z (OCoLC)742295268 |z (OCoLC)816325123 |z (OCoLC)823122112 |z (OCoLC)823843525 |z (OCoLC)823912223 |z (OCoLC)824099298 |z (OCoLC)824154714 | ||
050 | 4 | |a QA377 |b .G498 1983eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515/.353 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Gilbert, Robert P., |d 1932- |1 https://id.oclc.org/worldcat/entity/E39PBJy4cDgt9f6cjjCKTrGPwC |0 http://id.loc.gov/authorities/names/n50027536 | |
245 | 1 | 0 | |a First order elliptic systems : |b a function theoretic approach / |c Robert P. Gilbert, James L. Buchanan. |
260 | |a New York : |b Academic Press, |c 1983. | ||
300 | |a 1 online resource (xi, 281 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics in science and engineering ; |v v. 163 | |
504 | |a Includes bibliographical references (pages 269-274) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions | |
505 | 8 | |a 4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles | |
505 | 8 | |a 3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients | |
505 | 8 | |a 9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index | |
520 | |a First order elliptic systems : a function theoretic approach. | ||
650 | 0 | |a Differential equations, Elliptic. |0 http://id.loc.gov/authorities/subjects/sh85037895 | |
650 | 6 | |a Équations différentielles elliptiques. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Differential equations, Elliptic |2 fast | |
650 | 7 | |a Equations différentielles elliptiques. |2 ram | |
700 | 1 | |a Buchanan, James L. |0 http://id.loc.gov/authorities/names/n82060852 | |
758 | |i has work: |a First order elliptic systems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGTYkY8mMhfh4cjQV8qRKd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Gilbert, Robert P., 1932- |t First order elliptic systems. |d New York : Academic Press, 1983 |z 9780122832802 |w (DLC) 82008703 |w (OCoLC)8452388 |
830 | 0 | |a Mathematics in science and engineering ; |v v. 163. |0 http://id.loc.gov/authorities/names/n42015986 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297037 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/bookseries/00765392/163 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL452953 | ||
938 | |a ebrary |b EBRY |n ebr10329617 | ||
938 | |a EBSCOhost |b EBSC |n 297037 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 228934 | ||
938 | |a YBP Library Services |b YANK |n 3101863 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn316566645 |
---|---|
_version_ | 1816881689317605376 |
adam_text | |
any_adam_object | |
author | Gilbert, Robert P., 1932- |
author2 | Buchanan, James L. |
author2_role | |
author2_variant | j l b jl jlb |
author_GND | http://id.loc.gov/authorities/names/n50027536 http://id.loc.gov/authorities/names/n82060852 |
author_facet | Gilbert, Robert P., 1932- Buchanan, James L. |
author_role | |
author_sort | Gilbert, Robert P., 1932- |
author_variant | r p g rp rpg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .G498 1983eb |
callnumber-search | QA377 .G498 1983eb |
callnumber-sort | QA 3377 G498 41983EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions 4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles 3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients 9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index |
ctrlnum | (OCoLC)316566645 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05496cam a2200613 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn316566645</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">090320s1983 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OPELS</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OPELS</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OPELS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SGP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">646827880</subfield><subfield code="a">742295268</subfield><subfield code="a">816325123</subfield><subfield code="a">823122112</subfield><subfield code="a">823843525</subfield><subfield code="a">823912223</subfield><subfield code="a">824099298</subfield><subfield code="a">824154714</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780122832802</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0122832809</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080956695</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080956696</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316566645</subfield><subfield code="z">(OCoLC)646827880</subfield><subfield code="z">(OCoLC)742295268</subfield><subfield code="z">(OCoLC)816325123</subfield><subfield code="z">(OCoLC)823122112</subfield><subfield code="z">(OCoLC)823843525</subfield><subfield code="z">(OCoLC)823912223</subfield><subfield code="z">(OCoLC)824099298</subfield><subfield code="z">(OCoLC)824154714</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.G498 1983eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gilbert, Robert P.,</subfield><subfield code="d">1932-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJy4cDgt9f6cjjCKTrGPwC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n50027536</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">First order elliptic systems :</subfield><subfield code="b">a function theoretic approach /</subfield><subfield code="c">Robert P. Gilbert, James L. Buchanan.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">1983.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 281 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 163</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 269-274) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">First order elliptic systems : a function theoretic approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Elliptic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037895</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles elliptiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Elliptic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations différentielles elliptiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buchanan, James L.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82060852</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">First order elliptic systems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGTYkY8mMhfh4cjQV8qRKd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gilbert, Robert P., 1932-</subfield><subfield code="t">First order elliptic systems.</subfield><subfield code="d">New York : Academic Press, 1983</subfield><subfield code="z">9780122832802</subfield><subfield code="w">(DLC) 82008703</subfield><subfield code="w">(OCoLC)8452388</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics in science and engineering ;</subfield><subfield code="v">v. 163.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015986</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297037</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/bookseries/00765392/163</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL452953</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10329617</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">297037</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">228934</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3101863</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn316566645 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:42Z |
institution | BVB |
isbn | 9780122832802 0122832809 9780080956695 0080956696 |
language | English |
oclc_num | 316566645 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 281 pages) |
psigel | ZDB-4-EBA |
publishDate | 1983 |
publishDateSearch | 1983 |
publishDateSort | 1983 |
publisher | Academic Press, |
record_format | marc |
series | Mathematics in science and engineering ; |
series2 | Mathematics in science and engineering ; |
spelling | Gilbert, Robert P., 1932- https://id.oclc.org/worldcat/entity/E39PBJy4cDgt9f6cjjCKTrGPwC http://id.loc.gov/authorities/names/n50027536 First order elliptic systems : a function theoretic approach / Robert P. Gilbert, James L. Buchanan. New York : Academic Press, 1983. 1 online resource (xi, 281 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Mathematics in science and engineering ; v. 163 Includes bibliographical references (pages 269-274) and index. Print version record. Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions 4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles 3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients 9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index First order elliptic systems : a function theoretic approach. Differential equations, Elliptic. http://id.loc.gov/authorities/subjects/sh85037895 Équations différentielles elliptiques. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Elliptic fast Equations différentielles elliptiques. ram Buchanan, James L. http://id.loc.gov/authorities/names/n82060852 has work: First order elliptic systems (Text) https://id.oclc.org/worldcat/entity/E39PCGTYkY8mMhfh4cjQV8qRKd https://id.oclc.org/worldcat/ontology/hasWork Print version: Gilbert, Robert P., 1932- First order elliptic systems. New York : Academic Press, 1983 9780122832802 (DLC) 82008703 (OCoLC)8452388 Mathematics in science and engineering ; v. 163. http://id.loc.gov/authorities/names/n42015986 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297037 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/bookseries/00765392/163 Volltext |
spellingShingle | Gilbert, Robert P., 1932- First order elliptic systems : a function theoretic approach / Mathematics in science and engineering ; Front Cover; First Order Elliptic Systems: A Function Theoretic Approach; Copyright Page; Contents; Preface; Chapter 0. Introduction; Chapter 1. Elliptic Systems in the Plane; 1. Introduction; 2. Hyperanalytic Functions; 3. Generalized Derivatives and the Hypercomplex Pompieu Operator; 4. Generalized Hyperanalytic Functions and Liouville's Theorem; 5. Cauchy Representation for Generalized Hyperanalytic Functions; 6. M-Analytic Functions; 7. Approximate Solutions; Chapter 2. Boundary Value Problems; 1. Introduction; 2. The Plemlj Formulas; 3. The Hilbert Problem for Hyperanalytic Functions 4. The Representation of a Piecewise Generalized Hyperanalytic Function in Terms of a Density5. The Hilbert Problem for Generalized Hyperanalytic Functions; 6. The Hilbert Problem in the Purely Hypercomplex Case; 7. The Riemann-Hilbert Problem for Hypercomplex Functions; 8. The Representation of a Generalized Hyperanalyiic Function in Terms of a Real Density; 9. The Riemann-Hilbert Problem for Generalized Hyperanalytic Functions; 10. The Riemann-Hilbert Problem in the Purely Hypercomplex Case; Chapter 3. Reductions to Hyperanalyticity; 1. Introduction; 2. Similarity Principles 3. Global Similarity Principle4. The Riemann-Hilbert Problem; 5. Hyperanalytic Functions Having Distributional Boundary Data; 6. Nonlinear Problems and Reductions to Linear Problems; 7. Liouville's Theorem and the Similarity Principle for Pascali Systems; Chapter 4. Function Theory over Clifford Algebras; 1. Introduction; 2. Regular Functions; 3. Hilbert Modules; 4. Liouville's Theorem; 5. a-Holomorphic Functions; 6. Generalized Regular Functions in Rn; 7. Overdetermined Elliptic Systems; 8. Function Theory for Higher Order Elliptic Systems with Analytic Coefficients 9. Commutative Alternatives for Higher Dimensional Function TheoryChapter 5. Partial Differential Equations of Several Complex Variables; 1. Inhomogeneous Cauchy-Riemann Equations in Polycylinders; 2. Inhomogeneous Cauchy-Riemann Systems for Several Unknowns; 3. Existence Theorems for Solutions of Partial Differential Equations in Several Complex Variables; 4. Real-Linear Equations in Two Complex Variables; 5. Nonhomogeneous Cauchy-Riemann Equations in Analytic Polyhedra; 6 . Pluriharmonic Functions; Bibliography; Index Differential equations, Elliptic. http://id.loc.gov/authorities/subjects/sh85037895 Équations différentielles elliptiques. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Elliptic fast Equations différentielles elliptiques. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037895 |
title | First order elliptic systems : a function theoretic approach / |
title_auth | First order elliptic systems : a function theoretic approach / |
title_exact_search | First order elliptic systems : a function theoretic approach / |
title_full | First order elliptic systems : a function theoretic approach / Robert P. Gilbert, James L. Buchanan. |
title_fullStr | First order elliptic systems : a function theoretic approach / Robert P. Gilbert, James L. Buchanan. |
title_full_unstemmed | First order elliptic systems : a function theoretic approach / Robert P. Gilbert, James L. Buchanan. |
title_short | First order elliptic systems : |
title_sort | first order elliptic systems a function theoretic approach |
title_sub | a function theoretic approach / |
topic | Differential equations, Elliptic. http://id.loc.gov/authorities/subjects/sh85037895 Équations différentielles elliptiques. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Elliptic fast Equations différentielles elliptiques. ram |
topic_facet | Differential equations, Elliptic. Équations différentielles elliptiques. MATHEMATICS Differential Equations Partial. Differential equations, Elliptic Equations différentielles elliptiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=297037 https://www.sciencedirect.com/science/bookseries/00765392/163 |
work_keys_str_mv | AT gilbertrobertp firstorderellipticsystemsafunctiontheoreticapproach AT buchananjamesl firstorderellipticsystemsafunctiontheoreticapproach |